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Abstract— Even small changes of electrode recording sites
after training a classifier heavily influence robustness and
usability of traditional pattern recognition-based myoelectric
control schemes. This effect occurs during donning and doff-
ing of the prosthesis or when changing the arm position
and generally leads to a significant decrease of classification
accuracy. On the other hand, image representations taken
from high density electromyographic (EMG) signals offer high
spatial resolution and only seem to change slightly during
electrode shift, preserving most structural information. In this
paper, we present a simple one-against-one nearest neighbor
classifier based on the Structural Similarity Index (SSIM).
SSIM quantifies visual similarity of two images based on
decomposition into three components: luminance, contrast and
structure. Our experimental results indicate that an SSIM-
based classifier can outperform an LDA-based classifier using
structural information taken from high density EMG signals
during simulated electrode shift.

I. INTRODUCTION

Pattern recognition-based control schemes are an active
research area potentially enabling the amputee to intuitively
operate multiple degrees of freedom [1], [2]. A variety
of feature extraction methods and classification algorithms
have been successfully developed and evaluated for upper-
limb prosthesis control in laboratory settings [3], [4]. One
challenge in pattern recognition-based control schemes is
variation in electrode recording placement. Donning, doffing
or using a myoelectric prosthesis over a longer time period
can cause the electrodes inside the shaft to change their
recording locations which results in a decrease of classifi-
cation accuracy. The effect has been previously studied but
remains an unsolved problem [5], [6]. Hargrove et al. [7]
showed that the displacement effect can be alleviated by
performing a training in all expected displacement positions,
which is unsuitable for real world usage.

Apart from donning and doffing the prosthesis, changes
in gravity, muscle length and volume, and other biomechan-
ical effects during limb positioning are another source for
the electrode displacement effect. In most literature, EMG
signals are acquired in a fixed position and used for both,
training and testing of the classifier. This enables the amputee
in performing repeatable contractions throughout the exper-
iment and typically results in a high classification accuracy.
In clinical testing however, subjects have to perform realistic
activities of daily living, causing the limb to move in different
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positions which leads to accuracy degradation. This effect
has also studied [8], [9] but has not yet been satisfactorily
solved.

High density EMG recordings offer unprecedented spatial
resolution of muscular activity and contain structural infor-
mation suitable to use as input for pattern recognition of
myoelectric control schemes. Analyzing image data extracted
from high density EMG recordings it is notable that structural
information remain mostly unchanged during electrode shift.

In the field of computer vision, various methods are
used to quantify similarity between images based on their
structural information. A prominent method is the Structural
Similarity Index (SSIM) [10], offering an objective method to
quantify the similarity of two images by decomposing them
into the components luminance, contrast and structure. The
method was successfully used for classifying range-based
face recognition [11] and hand writing recognition [12].

Based on this method, we propose a simple one-against-
one nearest neighbor classifier to distinguish between 10
hand and wrist movements using image representations from
high density EMG recordings. We conduct an experiment
to determine the robustness against electrode displacement
effect caused by shifting electrodes on the skin and using
different limb positions. We then compare the results with
LDA, which is commonly used in EMG pattern recognition.

This paper is structured as follows. The experimental
setup and structure of the proposed SSIM-based classifier are
presented in section II. The experimental results are shown
in section III while section IV offers a short discussion.

II. METHODS
A. Data Acquisition and Feature Extraction

For this experiment, EMG data corresponding to 10 hand
and wrist motions were acquired from one healthy normally
limbed 30 years old male subject. The data were collected
from an array of 96 electrodes consisting of 4 rows of 24
electrodes wrapped around the forearm. A TMS International
REFA 128 high density EMG system was used for data
acquisition.

The experiment consisted of three runs, each performed in
a different limb position: during the first run, the test subjects
arm was hanging straight down at the side. In the second
run, the arm was straight reaching forward. In the last run,
the arm was reaching up in an angle of 45°. During each
experiment run, the test subject was prompted to perform
10 contractions: extension, flexion, pronation, supination,
ulnar deviation, radial deviation, hand open, power grip,
pincer grip and key grip. Each contraction was held for 5

4547



extension pronation

ulnar deviation

open pincer grip

T - - T T T

flexion supination

radial deviation

power grip key grip

N TS T T - T

Fig. 1.

Grid representation of EMG movement data in arm low position, each pixel representing an EMG channel. Each channel was RMS-smoothed

using a 100 ms sliding window. High RMS activity channels are colored red, low RMS activity channels are colored blue.

seconds, followed by a 2 seconds rest period. For each limb
position, 10 different trials were recorded, each consisting
of 12 repetitions of the same contraction. After each trial, a
one-minute rest period was included to avoid muscle fatigue
effects. From each contraction, 4 seconds of data from the
steady state phase were extracted. In total 12 x 4 sec
= 48 seconds of data were recorded for each movement
class and limb position. The first 24 seconds were used for
training the classifier; the remaining 24 seconds were used
for classification. Fig. 1 shows a grid representation of the
EMG data during the acquired movements.

B. The Structural Similarity (SSIM) Index

In order to calculate the SSIM index [10] of two images
represented by the non-negative signals x and y, the images
are decomposed into three components: luminance, contrast
and structure. The components are then compared separately.
Finally a value between -1 and 1 is calculated as an index
of similarity between the input images. First, the luminance
1 of both signals is estimated as the mean intensity:

pe=y L (1)

=

The luminance comparison function I(x,y) is a function
of t, and p,:

21ty + C
I(x,y) = ﬁ (2)
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C1 and G, are constants included to avoid instability when
u)% + uf, is very close to zero. The mean intensity is then
removed from the signal and the standard deviation (square
root of variance) is estimated as the signal contrast o:
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Furthermore, structure comparison s(x,y) is conducted:

ny + C3
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(5)

with C3 = C,/2 and oy, estimated as the covariance of the
signals:

s(x,y) =
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Finally, the three comparisons (2), (4) and (5) are combined
in the SSIM index between signals x and y:

SSIM(x,y) = [1(x,9)]* - [c(e, )P - [sx )" (7)

where non-negative o, B and y are used to adjust the
relevance of the three components. In this paper, we use
o = =y=1. For two given images, the SSIM index is first
locally calculated using an 11-pixel Gaussian sliding window
filter and then averaged into one value ranging between -1
and 1, with 1 being the index value for two identical images.

For illustration purposes, Figs. 2 and 3 depict image
decomposition and SSIM index calculation of high density
EMG data used in the experiments. Fig. 2 shows the compari-
son between two similar but not identical signals representing
the same movement class. The difference in luminance and
contrast between the input signals are almost zero, while
there are minor differences in image structure due to the
slightly differently performed movement. In this example,
his results in a relatively high SSIM index of 0.931.

Fig. 3 shows comparison between images representing
slightly different movement classes, resulting in a relatively
low SSIM index of 0.221. While the difference in luminance
is only minor, there are significant differences in contrast and
structure.

Due to a minimum amount of pixels necessary for cal-
culating the SSIM index, input signals (4 x 24 pixels) are
linearly interpolated with factor 3 when used as input for
SSIM index calculation.

C. Training Phase

As previously indicated, the first 24 seconds of data rep-
resenting each contraction class are used to train the pattern
recognition system while the remaining 24 seconds are used
for classification. For each movement class, n frames of 4
x 24 pixels are extracted from the high density EMG raw
data using a 100 ms wide, 50 ms overlapping RMS filter
window. These 10 X n X 4 x 24 = n X 960 values will
be used as feature vectors for training of a traditional LDA
classifier that we use as a reference for comparing against
the SSIM-based classifier in the Results section.

The extracted n frames are then averaged into 1 frame for
each movement class. The resulting 10 frames of 4 x 24
pixels form the training model for the SSIM-based classifier.

D. Test Phase

In this phase, we use SSIM as a simple one-against-one
nearest neighbor classifier. For this purpose, we extract n test
frames from the test data in the same manner as the frames
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in a relatively low SSIM index value.

for the training model. A frame representing EMG data
of an unknown movement class is interpolated and SSIM-
compared with each of the 10 interpolated frames from the
training model. The highest resulting SSIM index decides
the class.

To simulate electrode displacement due to gravity and
biomechanical reasons, three different limb positions were
used for training and testing the classifiers. To simulate the
electrode displacement effect caused by shifting electrodes
on the skin surface, the representation of the electrode array
in the test data was horizontally shifted by 1 cm in the
software simulation. This is equivalent to the amount of
electrode displacement that is likely to occur during everyday
prosthesis wear.

III. RESULTS

We have performed the experiment to answer two specific
questions: First, can a computer vision-based classifier that
treats high density EMG data as images and classifies them
based on structural information outperform a traditional
pattern recognition-based classifier? Second, since electrode

U

Decomposition and SSIM comparison of two dissimilar signals representing different movement classes (ulnar deviation and extension), resulting

shift has minor influence on image representation of EMG
data, is a computer vision-based classifier more robust to it?

To evaluate the performance of the SSIM-based and LDA
classifier when classifying unshifted and 1 cm shifted EMG
data, we have trained and tested both classifiers in all
3 arm positions and 24 possible electrode array positions
successively. Then, we have averaged the performance in
terms of classification accuracy. The results are depicted in
Fig. 4. It can be seen that both classifiers perform best when
arm position is not changed while testing (Fig. 4 (a), (e),
and (i)). The average intra-class accuracy rate is 95.3% for
unshifted and 90.2% for 1 cm shifted data using SSIM and
79.3% (unshifted) and 43.8% (shifted) using LDA. When
taking changes of limb position into account (Fig. 4 (b), (c),
(d), (f), (g), and (h)) one can observe a accuracy degradation
in both classifiers. The average inter-class accuracy of SSIM
is 71.3% for unshifted and 65.5% for 1 cm shifted data
while LDA’s average accuracy drops to 46.8% (unshifted)
and 39.8% (shifted).

While both, the SSIM-based and LDA classifier suffer
from electrode displacement due to limb positioning and
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Fig. 4. Average classification accuracies of SSIM and LDA are compared. In (a), (e), and (i), the arm position remained the same during training and
test phase while in all other cases the arm position was changed. For each case, there was either no simulated shift of test data (black bar), a simulated

shift of 1 cm to the left (light grey bar) or 1 cm to the right (dark grey bar).

simulated electrode shifting, the SSIM-based classifier seems
more robust against both effects.

IV. DISCUSSION

The Structural Similarity Index quantifies the visual sim-
ilarity between two images as the product of three compo-
nents: luminance, contrast and structure. Our results indicate
that a simple one-against-one classifier based on SSIM
seems to outperform a traditional pattern recognition-based
classifier like LDA using structural information from images
of high density EMG data in terms of absolute classification
accuracy and robustness to electrode shift.
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