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Abstract—A generalized mathematical model is proposed for
behaviors prediction of biological causal systems with multiple
inputs and multiple outputs (MIMO). The system properties are
represented by a set of model parameters, which can be derived
with random input stimuli probing it. The system calculates
predicted outputs based on the estimated parameters and its
novel inputs. An efficient hardware architecture is established
for this mathematical model and its circuitry has been imple-
mented using the field-programmable gate arrays (FPGAs). This
architecture is scalable and its functionality has been validated by
using experimental data gathered from real-world measurement.

I. INTRODUCTION

Causal systems which exhibit high-order nonlinearities
and dynamic properties are ubiquitous in the physical
constitutions of organisms. Such systems may exist as
parts/subconfigurations of animal cardiovascular system, en-
docrine system or nervous system (e.g. the hippocampal DG-
CA3-CA1 subsystem). Various computational models have
been established to model these complex parts or subconfigu-
rations [1]. Generally, these models have multiple inputs and
multiple outputs (MIMO) in structure, as shown in Fig. 1-a. It
is an interesting problem how to derive the model outputs at
a specific timing from existing information of the system the
observer gathered prior to that timing.

Historically, there are two approaches (modeling tech-
niques). One is parametric modeling, which entails a prior
postulations of the model structure based on the fundamental
physical mechanisms of the system that have been understood
[2]. The parametric models, although possessing the capability
of being directly and physically interpreted, have two major
drawbacks. One is the built-in biases in model postulation
owning to the existence of undiscovered mechanisms and
processes. The other is the super-complicated computational
processes that may be incurred due to the large amount of
mechanisms underlying the system to be modeled paramet-
rically. For example, in human nervous system, effects of
these mechanisms vary greatly with ion channel densities,
distributions in dendrites, and many other parameters [3].

In view of the above, the non-parametric models are pro-
posed, which use engineering modeling techniques such as
network analysis and statistical methods to investigate the
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Fig. 1. The non-parametric modeling paradigm for MIMO systems. (a): A
multi-input (x1-xn), multi-output (y1-ym) (MIMO) system. (b): Decomposi-
tion of MIMO system into multi-input, single-output (MISO) systems. (c):
Estimation of system properties. (d): Prediction of system output.

properties of the complex systems [4]. They can take a general
model form (Volterra series) and are able to be obtained
directly from a broader repertoire of input-output data [1].

In [5], a generalized Volterra model is introduced and two
techniques are proposed thereon: 1) MIMO model decompo-
sition (as shown in Fig. 1-b) and 2) Laguerre expansion of
Volterra kernels (the model can also be termed as generalized
Laguerre-Volterra model: GLVM) to track the properties of
the nonlinear dynamic systems non-parametrically.

Prior to conducting system output prediction, model coeffi-
cients (Laguerre coefficients) have to be estimated in the first
place using recorded input-output data under broad experi-
mental conditions (as shown in Fig. 1-c) [6]. Subsequently,
these coefficients can be utilized, together with the novel
inputs, for prediction of the future outputs (as shown in
Fig. 1-d). In an earlier publication, we report an efficient
hardware framework established for offline estimation of the
Laguerre coefficients based on field-programmable gate array
(FPGA) [7]. In this paper, we introduce the hardware architec-
ture for online prediction of model outputs employing high-
order kernels and the reconfigurable platform. Although the
work introduced in [7] is originally inspired by and dedicated
to a neuroinformatics application, both architectures derived
(in [7] and this paper) can be adapted and well applied to
a broader range of real-world biological causal systems, for
prediction of their behaviors.

The major contributions of this work and the novelty of our
silicon design are reflected in the following aspects.

1) The original generalized Laguerre-Volterra model is
adapted for behaviors prediction of generic biological
MIMO casual systems.

2) An efficient hardware architecture is for the first time
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invented based on the adapted model.
3) The second-order Volterra kernel (with cross terms) is

for the first time introduced to the hardware. Its silicon
module has been successfully integrated to the top-level
architectural framework.

4) The proposed design has been validated in experimental
settings. It is integratable to the earlier established model
parameters estimation architecture [7].

II. METHOD

For each of the MISO models proposed (shown in Fig.
1-b), a further decomposition can be conducted to partition
it into four major components as shown in Fig 2. These
are: 1) a feedforward Volterra kernel K which generates
the “synaptic potential" u from recorded model inputs, 2)
a feedback Volterra kernel H which generates the “after-
potential" a from recorded model output, 3) a noise term ε
which captures the influences of intrinsic system noise and
unobserved model inputs, 4) an output trigger which generates
the predicted model output measuring the above quantities.
The terms synaptic potential and after-potential are derived
from the study of neural networks. However, they can take
on general meanings with regard to generic MIMO system
modeling. The detailed algorithmic description of the GLVM
can be found in [5].

Owing to the requirement of generic biological causal
system behavior identification, the original GLVM is subject
to further adaption, which is reflected in the following aspects.

• System inputs and feedback outputs are normal-
ized/denormalized in the first/last stage of calculation.
The normalization/denormalization procedure is con-
ducted in consideration of a fixed Laguerre pole being
adopted and in prevention of possible data overflow.

• The normalized input and feedback output should be
convolved with different orders of Volterra kernels, as
shown in (3) and (4) of [6]. In order to reduce the large
amount of open parameters arised in direct Volterra
modeling [8], an important technique named Laguerre
expansion of Volterra kernel (LEV) is adopted. The
ith order kernel ki is expanded in terms of Laguerre
basis functions bj [9] so the potential values could
be written into Wiener-Bose type expressions which
are mathematically convenient. In this design, the
Laguerre basis functions are obtainable through inverse
Z-transform of transfer function of the Laguerre filter:

b
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where j indicates the order of the Laguerre basis function;
αn is the Laguerre pole.

• The pre-threshold membrane potential w can be derived
by adding u, a and ε, as:

w = u(k, x) + a(h, y) + ε(σ). (2)

In (2), k and h are feedforward and feedback Volterra
kernels; x and y are input and feedback output.
Model output yt+1 is predicted by measuring the sum-
mation result and with the utilization of a triggering
function as shown in (3). In this design, we set the firing
probability quantity in the original GLVM [5] directly
as the system output, followed by a denormalization
procedure, which effectively meet our purpose.
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III. HARDWARE ARCHITECTURE

The proposed method can be implemented on different
platforms (either software or hardware). There are two major
drawbacks with regard to the software implementation, which
are inefficiency of model coefficients estimation [7] and inca-
pability of conducting real-time model output prediction. On
the other hand, the FPGAs, given their intrinsic hardware-level
programmability and massive parallel processing capability,
become an ideal choice for fast prototyping of the mathemati-
cal model. Fig. 3 shows the general hardware architecture for
conducting model outputs prediction.

A. Vector Convolution

The vector convolution circuitry serves a vital component in
both parameter estimation architecture [7] and the architecture
proposed in this paper. Contrast to [7], the component herein
consists an input multiplexion module. Previous studies sug-
gest that not all inputs necessarily contribute to the outputs in
a sparsely connected MIMO system, thus model selection has
to be conducted in the first place for identification of effective
channels [10]. The selection procedure can be effectively
conducted using the method proposed in [11].

The algorithms used for vector convolution is similar to
Algorithm 1&2 in [7], with the elimination of the 6th statement
in Algorithm 1 of [7] because the convolution product is
subject to further processing in a second-order GLVM (see
Sec. III-B).

B. Correlation of Convolution Products

The procedure of conducting vector expansion is described
by Algorithm 1 shown in this paper (following Algorithm 1&2
in [7]). The expanded vector H ′ is comprised of three parts:
H ′ = [H,H2s,H2x]. H2s accounts for the interactions among
different basis functions of individual input by multiplications
between each element pair (in all permutation). Given L
the number of basis functions, L × (L + 1) multiplication
operations are needed. H2x reveals contributions from pairs of

different system inputs.
(
N

2

)
× L2 pair-wise multiplications

are required under this premise. H ′ and the Laguerre coef-
ficients C undergo a further multiplication-and-accumulation
(MAC) operation and w can be derived at the root stage of
the adder array of the MAC component.
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Fig. 2. The basic flow of calculation for the outputs of a generic MIMO causal system utilizing high order Volterra kernels. In the figure, K is the feedforward
Volterra kernel, which consists of four sub-kernels, including the zeroth-order Volterra kernel k0, the first-order self-kernel k1_self , the second-order self-kernel
k2_self and the second-order cross-kernel k2_cross; H is the feedback Volterra kernel.

Fig. 3. Overview of the hardware architecture. The grey rectangular boxes
indicate key functional units while the white ones indicate the register (arrays).
In the figure, MUX_1 is input channel multiplexier; MUX_2 is convolution
input multiplexier; H_ext_2s and H_ext_2s are augmented horizontal vector
extension units; MAC is the multiplication-and-accumulation unit; GRNG is
the Gaussian random number generator; OT is the output trigger; I_1 to I_N
are selected effective model inputs; H is the augmented horizontal vector; H_1,
H_2s and H_2x form the extended vector; w is the “pre-threshold potential”;
C is Laguerre coefficients. In the figure: 1. USB port; 2. voltage converter; 3.
development board; 4-5. control path; 6. input from the estimation core [7].

C. Output Generator

The GRNG is built to simulate the intrinsic Gaussian noise
(such as the noised contributed by unobserved model inputs)
of the stochastic system under modeling. The configuration of
the GRNG is based on a uniform random number generator
(URNG) which is designed to produce uniformly distributed
random numbers {λ} within the range of [0, 1]. We use
{
∑N

i=1 λi} to form a quasi-Gaussian distribution; The URNG
is based on bitwise XOR operations between the lower 32 bits
of a 43-bit linear feedback shift register (LFSR) and the lower
32 bits of a 37-bit cellular automata shift register (CASR)
(cycle length: O(280)), as shown in Fig. 4. This Gaussian noise
quantity is further added to the “pre-threshold potential". The
summation is passed to the output trigger, which adopts a
transfer function to determine the value of model output at
each time step.

Algorithm 1 Vector space expansion of convolution product
(N: number of inputs)

1: H_2s = [];
2: H_2x = [];
3: for i = 1:N, % Input #1
4: for ps = 1:L,
5: for qs = ps:L,
6: vs1 = H(:,((i-1)*L+ps));
7: vs2 = H(:,((i-1)*L+qs));
8: vs = vs1.*vs2;
9: H_2s = horzcat(H_2s,vs);

10: for j = (i+1):N, % Input #2
11: for px = 1:L,
12: for qx = 1:L,
13: vx1 = H(:,((i-1)*L+px));
14: vx2 = H(:,((j-1)*L+qx));
15: vx = vx1.*vx2;
16: H_2x = horzcat(H_2x,vx);

IV. DEMONSTRATIVE IMPLEMENTATION AND RESULT

The functionality of the proposed silicon architecture has
been fully validated, employing the reconfigurable platforms.
The application scenario of the demonstrative implementation
is biological neural signal processing, for the mammalian ner-
vous system of a brain region is a typical MIMO causal system
which well satisfies the prerequisite of model application. In
our experiment, the laboratory animals are trained to perform
a type of memory task [12] and our silicon architecture is
utilized to predict the output of their regional hippocampal
brain signals. The model inputs are recorded using the multi-
electrode arrays which are implanted into the nervous system.
Model coefficients can be estimated at first offline utilizing
the platform established in [7]. Then with the architecture
proposed herein, model outputs can be predicted by employing
the novel inputs and the estimated coefficients.

The validation work consists of two stages. In the first
stage, we validate the functionality of the proposed mathe-
matical model. Test result shows that the model has achieved
desirable goodness-of-fit considering the fact that all points
generated by the Kolmogorov-Smirnov (KS) test lie closely
to the 45-degree line in the KS plot (within 95% confidence
bounds) [6]. In the second stage, we validate the function-
ality of the our proposed circuit architecture. We use the
FPGA-based hardware platform and the software platform to
process a session of neuronal firing data. We compare the
results generated by the hardware platform to the previous
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TABLE I
THE FPGA RESOURCE UTILIZATIONS (NI: NON-INTERFACED)

Compact Paralleled
Consumed Available Consumed Available

LUTs 36,819 69,120 55,617 150,720
LUTs (NI) 20,663 69,120 53,646 150,720

BRAMs 4 148 8 416
DSP48s 11 64 56 768

FPGA model XC5VLX110T XC6VLX240T
Board model Xilinx XUPV5-LX110T Xilinx ML605

Fig. 4. The structure of the Gaussian white noise generator. (fi2fl is the fixed
point to floating point conversion unit; the Post Processing unit is designed
to adjust the mean and variance of the generated distribution to a standard
normal distribution; the Control unit is in charge of URNG seed loading,
FIFO r/w signal generation and component enabling.)

software platform. The normalized mean square error (NMSE)
is defined as: NMSE =

∑T
t=1(y(t)− ỹ(t))2/

∑T
t=1 ỹ(t)

2,
where y and ỹ present the two data sets under comparison
while t is the timing of sampling. We observe that the NMSE
has been successfully controlled at the 10−13 scale, which
is an even stricter condition being met with regard to data
comparison. Thereupon we conclude that the hardware system
is functionally equivalent to the biological neural network. In
this demonstrative application, the proposed architecture is im-
plemented using two different FPGA models (XC5VLX110T
and XC6VLX240T). The information of hardware resource
utilization is shown in Table I. For the compact architecture,
only 2 FPGA processing units are used in the vector con-
volution module; for the paralleled architecture, the number
of PEs equals to Nin + 1 (Nin is the number of effective
inputs). For this demonstrative implementation, the compact
architecture can suffice with the processing core operating with
a 16MHz clock rate and producing a 98.16k samples/sec data
throughput. For more data intensive DSP applications, the fully
paralleled architecture can be adopted and the data throughput
can reach up to 800k samples/sec.

V. CONCLUSIONS

An efficient reconfigurable architecture is established for
behavior prediction of MIMO biological causal systems. The
contribution of this work is reflected in several aspects. First, it
is the first application of Volterra kernel based non-parametric
approach to the computation of generic biological causal
systems. Second, high-order kernels are for the first time
adopted by the hardware. Third, the architecture is effective,
efficient and capable of conducting real-time prediction of the
GLVM outputs, using the estimated Laguerre coefficients. This
design can be integrated with our previous model estimation
architecture to form a complete full-scale signal analysis sys-
tem and has good utilization potentiality in future engineering
practice.
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