



Abstract— An integral part of a system that manages

medical data is the persistent storage engine. For almost twenty

five years Relational Database Management Systems(RDBMS)

were considered the obvious decision, yet today new

technologies have emerged that require our attention as

possible alternatives. Triplestores store information in terms of

RDF triples without necessarily binding to a specific predefined

structural model. In this paper we present an attempt to

compare the performance of Apache JENA-Fuseki and the

Virtuoso Universal Server 6 triplestores with that of MySQL

5.6 RDBMS for storing and retrieving medical information that

it is communicated as RDF/XML ontology instances over a

RESTful web service. The results show that the performance,

calculated as average time of storing and retrieving instances, is

significantly better using Virtuoso Server while MySQL

performed better than Fuseki.

I. INTRODUCTION

The selection of the proper persistent storage solution is
an integral part of every modern information system. For an
eHealth, or coordinated care system a persistent storage
solution is required in order to store and retrieve medical data
from various sources.

In this respect, this selection is one of the first technical
challenges investigated in the context of the recently
launched WELCOME project [1]. WELCOME aims to build
an innovative system that goes beyond the state of the art
though: a) Integrated care encompassing socio-medical
aspects and technology of monitoring and treatment of
COPD patients with comorbidities of CHF, Diabetes,
Anxiety and Depression, b) Technological elements, like
sensing components and microelectronics that will compose
system’s motoring devices, and c) Cloud services and
advanced content delivery. The diversity, volume of data,
data access and data analysis needs, signify the importance of
the cloud storage engine component.

According to the initial architectural design decisions of
WELCOME, the storage server must communicate through a
common interface with various modules. A patient hub
module resides in the patient’s house and collects data from a
multi-sensor vest producing considerable amount of data
(initial estimations about 2Mbit/sec) and also from other
devices and questionnaires. The patient hub module must

The research leading to these results has been partially funded from the

FP -ICT Programme under Grant Agreement no 611223 - WELCOME.(
http://www.welcome-project.eu/).

V. Kilintzis, N. Beredimas and I. Chouvarda are with the Laboratory of

Medical Informatics, Medical School, Aristotle University of Thessaloniki,
Thessaloniki 54124, Greece (phone: +30-2310-999247; fax: +30-2310-

999263; e-mail: {billyk@med.auth.gr, beredim@auth.gr,

ioanna@med.auth.gr}.

communicate with the cloud based storage which has also
communication with other cloud based modules such as a
decision support system or modules that handle extraction of
second level features from bio-signals and bio-parameters.

The current common practice in eHealth systems is to use
RDBMS to store medical data since for many years this type
of systems were used and proved to be robust and efficient.
Triplestores although still not widely used, present significant
advantages in terms of modeling complex, semantically
enriched information and can also be easily integrated to web
services architectures since the communication is carried
over HTTP. On the other hand exchanging information as
triples (data entities composed of subject-predicate-object
definitions) adds overhead compared to the exchange of
database records for use in an RDBMS. Therefore, the
capability to handle large amount of data and system
performance are critical issues that must be addressed by a
triplestore in order to be selected as a viable alternative to
RDBMS.

In the past, triplestores have been characterized by poor
read/write performance [2]. Triple stores show their
competitive edge when used to store/retrieve RDF/XML
graphs [3]. However, most benchmarks available focus on the
performance of triple stores when loading in memory
serialised RDF from static files [4][5]. Although this provides
an insight to the engineering skill of the developers of each
system, it can’t be used to extrapolate performance in other
scenarios. This work focuses in testing the performance of a
basic RESTful web service that stores and retrieves numeric
and text data about a patient exchanged in RDF/XML format
using three different setups. The three setups tested were
PHP/MySQL, JENA API/Fuseki triplestore and JENA
API/Virtuoso triplestore.

II. METHODS

A. The Data model

First a simplified patient record model was developed.
The aim was to record and retrieve basic patient information
(name, social security number, date of birth), cholesterol
measurements (value and timestamp of each measurement)
and patient answers to questionnaires (answer value and
timestamp along with the related question). The entity model
(concepts and properties) was created as a Protégé ontology
[6]. The ontology consists of five main classes and the
description of the relations between them as object
properties. The five classes are: “Patient” whose instances
correspond to basic patient information, “BiologicalProperty”
whose instances define the possible biological parameters to
be measured, “Question” whose instances describe the
questions for which the system can store answers and the
classes “Answer” and “BiologicalPropertyValue” for storing

Evaluation of the performance of open-source RDBMS and

triplestores for storing medical data over a web service

Vassilis Kilintzis, Nikolaos Beredimas, Ioanna Chouvarda IEEE Member

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 4499

the actual answers and measurements for each patient as their
instances. The idea is to retrieve the instances as RDF triples
from the triplestore or the RDBMS via the web service and
populate the ontology. The result of this procedure is
information that is semantically enriched, self described and
can be presented inside Protégé. An example is presented in
Figure 1.

Figure 1. Ontology presenting classes and sample individuals.

B. The three storage setups

A REST service API was designed to allow read/write
access to the patient record system using RDF/XML. Three
systems were implemented as depicted in Figure 2.

Figure 2. Test systems’ design diagrams.

The first setup (Figure 2.A) consisted of the classic
solution of an SQL backend (MySQL 5.6 Community
edition), along with the API implemented in PHP and
running on an Apache web server. The database schema was
designed to be able to store multiple data types and various
entities in order to be scalable and easily adaptable in various
domains and it was not tightly bounded to the data model of

the benchmark, in order to simulate the implementation of a
real system. The PHP web service used the open-source RAP
- RDF API [7] library in order to handle the RDF/XML
messages. This system offered a baseline-like measure of
performance.

In the second (Figure 2.B) setup the API was
implemented on Java using the Jena API [8]. Jena was
selected partly because it is RDF-centric and not OWL-
centric like the OWL API [9]. This would guarantee that any
performance observations would be a result of the triple store
characteristics and not skewed by performance shortcomings
when converting OWL axioms to triples. In addition, being
an Apache project the Jena API offers a big support
community making it easier to use for the purpose of rapid
testing. The back end server used on the second system was
Fuseki [10]. Fuseki is a SPARQL server being developed
alongside Jena and following the SPARQL 1.1
recommendation [11].

For the third setup (Figure 2.C), the Virtuoso [12]
Universal Server 6 Open Source Edition was used. Being
praised for its performance in RDF loading speed in other
benchmarks [13], it offered the best possible blind choice to
test the current state of triple stores. Due to developer
limitations we were forced to use Virtuoso version 6,
although we reasonably expect the current version 7 to offer
equivalent if not better performance. Source code changes in
the API from the second to the third setup were minimal,
consisting only of editing the SPARQL endpoint paths and
adding an HTTP authentication routine for Virtuoso.

C. The benchmark

To benchmark the three setups we implemented a single
benchmarking script that executed HTTP requests to the
RESTful API in order to test store and retrieve performance.
The benchmarking script was the same for each test apart
from the path to the web service that was changed
corresponding to the setup being benchmarked. Those
requests created in sequence a total of 500 patient records.
For each record, 4 cholesterol measurements and 4 answers
were added. Each record creation, measurement addition and
answer addition were performed in distinct individual
requests, for a total of 4500 requests. Next, the benchmarking
script was used to read the data from each system through
specific HTTP requests. First the cholesterol measurements
were requested (500 requests), then the answers (500
requests), then the complete patient records (500 requests).
All tests were handled on the same hardware (laptop with
Intel T3400 CPU, running Windows 7 32-bit) serving both as
server and client (no network latency).

III. RESULTS

No significant variation was observed in the execution
time of successive same type requests in each of the three
systems. In order to be complete, in the results we present the
average response time along with the standard deviation (SD)
of each setup for all request types.

The average write performance measured in milliseconds
for each type of request in each one of the three systems is
presented in Figure 3. The Fuseki backend implementation is
the slowest of the three with the mean (SD) time being 763

Service implementation using
JENA API

(JAVA)

Virtuoso Universal Server

RESTful web service API

SPARQL

Benchmarking Script

RDF/XML

Service implementation using
RAP – RDF

(PHP)

MySQL

RESTful web service API

SQL

Benchmarking Script

RDF/XML

Service implementation using
JENA API

(JAVA)

Fuseki

RESTful web service API

SPARQL

Benchmarking Script

RDF/XML

Sun J2SE HttpServerApache 2 Sun J2SE HttpServer

A B C

4500

(204)ms, 768 (143)ms and 767 (175)ms for the three request
types (Patient info, Cholesterol measurement, Question
Answer). The other two performed better. The Virtuoso
based implementation was significantly faster in all request
types with average response time 15 (7)ms, 14 (3)ms and 12
(2)ms for the three request types compared to MySQL based
setup that had 211 (107)ms for patient info, 137 (80)ms for
cholesterol measurement and 56 (5)ms for answer to
questions.

Figure 3. Average write response time per solution and request type.

Regarding the read performance, the response times are
comparable except for the request of complete record in the
Fuseki based implementation where a severe performance
drop was noticed. The results of the average read request
response time are shown in Figure 4. The Virtuoso based
system averaged response times of 27 (4)ms for cholesterol
measurement read request, 26 (2)ms for question answer
request and 46 (4)ms for complete patient record request. The
RDBMS based system had average response time of 56
(6)ms, 58 (5)ms and 36 (5)ms respectively. Finally Fuseki
had average response times of 28 (8)ms, 24 (3)ms and 539
(147)ms for the three read request types.

Figure 4. Average read response time per solution and request type.

IV. DISCUSSION

Selecting a storage engine is a critical task in the
development process of a medical data management system.
The purpose of the proposed benchmark was to assess using a
realistic scenario the performance of the complete process of
storing and retrieving data through a web service API which
is different from most already existing benchmarks that
assess the performance of just the storage layer through bulk
import export of data from and to the file system.

The results of our work show that triplestores can be used
as an alternative to the widely accepted RDBMS based
storage solutions. The current generation of triplestores
appears to be ready, at least performance-wise, for
developing production-grade systems.

The Virtuoso based implementation performed better than
the classic MySQL solution in all but one of the test cases.

The Fuseki based implementation suffered from write
performance issues, when comparing to either the Virtoso or
the MySQL based solutions. Even taking into account the
hardware used to evaluate its performance, it is too slow to be
considered as an alternative for any production-grade system.

A major advantage that was obvious while developing the
testing systems is that the use of triplestores with SPARQL
endpoint are easy to interchange since the SPARQL standard
is clearer and is followed strictly by the triplestore endpoints.
On the other hand different makers of SQL capable systems
do not perfectly adhere to the standard, for instance by
adding extensions, and the standard itself is sometimes
ambiguous. Additionally the use of connectors is not required
as SPARQL endpoints operate over HTTP while the use of
an RDBMS requires a frontend language specific-RDBMS
specific connector library in order to communicate.

Selecting a triplestore to store medical data instances
along with an ontology to describe the model, as we did in
our case, enables the use of a flexible schema that can be
expanded without the need of redesign in the storage level. In
the implementation of the PHP web service the model was
inevitably described once in PHP code in order to map RDF
into proper MySQL queries and also in the MySQL database
schema in order to identify stored data. This procedure has
obvious implications on the maintenance and flexibility of a
complete system.

Still, more issues have to be studied before one chooses to
switch to triplestores for persistent storage of medical data.
One issue is that of integrity constraints. RDF works under
the Open World Assumption [14] and alone offers no
validation of constraints. Apart from the obvious solution of
implementing this functionality on the application layer, there
is no consensus of how to implement it on the storage layer,
for example either by extending the RDF standard or
semantically identifying constraint violations using SWRL or
SPIN.

Another key issue the authors have identified, that needs
further study is that of security. One can reasonably expect
that as triple stores gain ground in production systems new
types of attacks against these systems will be devised. Still,
even current attack types analogous to the attacks observed

Cholesterol
Measurements

Answers
Complete Patient

Record

VIRTUOSO 27 26 46

RDBMS 56 58 36

FUSEKI 28 24 539

0

100

200

300

400

500

600

R
e

sp
o

n
se

 t
im

e
 i

n
 m

ill
is

e
co

n
d

s

Average Read Performance

Patient
Info

Cholesterol
measurement

Answers

VIRTUOSO 15 14 12

RDBMS 211 137 56

FUSEKI 763 768 767

0

100

200

300

400

500

600

700

800

900

R
e

sp
o

n
se

 t
im

e
 i

n
 m

ill
is

e
co

n
d

s

Average Write Performance

4501

on relational database systems, like SPARQL injection [15],
are not currently well understood by developers.

Future plans for this work include benchmarking in more
complex scenarios. These involve enhancing both the
ontology and the storage system. The main changes should
allow the handling of binary data, such as biosignals
originating from wearable biosensors. Then the system’s
behavior will be tested for requests involving large amounts
of data. The assessment of the results of those tests will point
out which is the optimal solution for the storage of
WELCOME project’s data.

REFERENCES

[1] www.welcome-project.eu
[2] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. “Scalable

semantic web data management using vertical partitioning”, in

Proceedings of the 33rd international conference on Very large data

bases ‘07, pp. 411-422.

[3] RDF 1.1 Primer, http://www.w3.org/TR/rdf11-primer/

[4] C. Bizer, A. Schultz, “The berlin sparql benchmark.” , International
Journal on Semantic Web and Information Systems (IJSWIS), vol. 5.2,

2009, pp. 1-24.

[5] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems.” Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 3.2, 2005, pp. 158-182.
[6] Protégé, http://protege.stanford.edu

[7] RAP - RDF API for PHP, http://wifo5-03.informatik.uni-

mannheim.de/bizer/rdfapi/
[8] Apache Jena, https://jena.apache.org/

[9] M. Horridge, and S. Bechhofer, “The owl api: A java api for owl

ontologies.”, Semantic Web, vol. 2.1, 2011, pp. 11-21.
[10] Fuseki, http://jena.apache.org/documentation/serving_data/index.html

[11] SPARQL 1.1 Overview, http://www.w3.org/TR/sparql11-overview/

[12] O. Erling, and I. Mikhailov. “RDF Support in the Virtuoso DBMS.”
Networked Knowledge-Networked Media. Springer Berlin Heidelberg,

2009, pp. 7-24.

[13] BSBM V3.1 Results (April 2013), http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html

[14] S. Abiteboul, R. Hull, and V Vianu. Foundations of databases. Vol. 8.

Reading: Addison-Wesley, 1995.
[15] P. Orduña, et al. “Identifying Security Issues in the Semantic Web:

Injection attacks in the Semantic Query Languages.” Actas de las {VI}

Jornadas Científico-Técnicas en Servicios Web y {SOA}}, vol. 51, pp.
4529-4542.

4502

