
  

  

Abstract— In this study the potential of a Laser Doppler Vi-
brometer (LDV) was tested as a non-contact sensor for the clas-
sification of heart sounds. Of the twenty participants recorded 
using the LDV, five presented with Aortic Stenosis (AS), three 
were healthy and twelve presented with other pathologies. The 
recorded heart sounds were denoised and segmented using a 
combination of the Electrocardiogram (ECG) data and the 
complexity of the signal. Frequency domain features were ex-
tracted from the segmented heart sound cycles and used to 
train a K-nearest neighbor classifier. Due to the small number 
of participants, the classifier could not be trained to differenti-
ate between normal and abnormal participants, but could suc-
cessfully distinguish between participants who presented with 
AS and those who did not. A sensitivity of 80 % and a specifici-
ty of 100 % were achieved a test dataset.  

I. INTRODUCTION 
ardiovascular Disease (CVD) is a growing concern 
for developing countries, as the number of people 
who are diagnosed with CVD in those countries is 

steadily increasing. As a result, sparse health care resources 
are being diverted towards the detection and treatment of 
CVD [1]. Early detection of illnesses such as CVD is an 
important aspect of managing the scarce resources available 
in the underserved and impoverished communities. Very 
often there is not sufficient medical care available to provide 
such a service [2]. Telemedicine and automated diagnosis 
tools could become an important tool in providing basic 
medical care to those living outside urban areas. 
 
The Laser Doppler Vibrometer (LDV) was originally devel-
oped to measure structural vibrations, but has recently been 
investigated for use as a non-contact biomedical sensor. The 
LDV has the potential to become a versatile diagnostic tool 
operable by an unskilled person, making it ideal for the tel-
emedicine industry. Umberto et al. [3] compared the LDV 
output to the well-researched phonocardiogram, while De 
Melis et al. [4] studied the velocity profile to find character-
istic features unique to different heart pathologies.  
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Heart murmurs are high frequency noises which are audible 
in-between the normal heart sounds. Heart murmurs are ob-
served when the heart valves do not function properly, either 
creating a narrowed flow path (stenosis) or allowing blood to 
flow backwards through the valve (regurgitation) [5]. The 
most common instrument used to detect and classify heart 
sounds and murmurs is the stethoscope, which requires 
physical contact with the patient [6]. In the interest of com-
paring the LDV to more well-known techniques (such as the 
phonocardiogram) the output of the LDV was filtered ac-
cording to techniques described De Melis et al. [3] and Um-
berto et al. [4]. This produced a waveform visually similar to 
the phonocardiogram which could be analyzed with many of 
the same techniques. Because it is a non-contact sensor, the 
LDV can more easily be used in situations where contact is 
undesirable or impossible, such as monitoring the vital signs 
of burn victims or individuals inside a biohazard zone with-
out physically being inside the contaminated are. To the au-
thors’ knowledge no attempt has been made to use the LDV 
as part of an automated diagnosis system at the time of this 
publication. 

II. EXPERIMENTAL SETUP 

A. Apparatus and Measurement Approach 
The measurement setup is shown in Figure 1. The LDV 
(MetroLaser Inc. model 500V) is mounted with the laser 
beam perpendicular to the participant's chest. Laptop 1 con-
trols the Electrocardiogram (ECG, Norav Medical model 
1200HR) data acquisition and Laptop 2 controls the LDV 
data acquisition from the ZonicBook Medallion (ZBM). The 
ZBM has built-in anti-aliasing filters and the LDV signals 
were sampled at 5120 Hz.  
 
The signal generator (SG) injected a 20 Hz sinusoidal signal 
into both the ECG data acquisition system and on a channel 
on the ZBM. The sinusoidal wave was used to synchronise 
the data recorded by the two laptops during postprocessing. 
The LDV data was recorded on a single position on the ster-
num of the participant, as suggested by De Melis et al. [3] 
and Umberto et al. [3]. The participant data was recorded 
with the participants in the supine position.  
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Fig 1. The test frame setup showing the positions of the data acquisition 
units and sensors relative to the participant.  

 
 

B. Procedure 
In total, 20 participants were recorded at Tygerberg Aca-
demic Hospital in Cape Town, South Africa. The study was 
approved by the relevant institutional review board of Stel-
lenbosch University. All participants gave informed consent, 
at which point they were diagnosed by a cardiologist from 
the Division of Cardiology at Tygerberg Academic Hospital. 
Thereafter recordings were made using the LDV measure-
ment setup.  
 
For each recording, an accompanying ECG measurement 
was taken. The range of pathologies which were recorded 
included three participants with normal heart sounds and 
seventeen with abnormal heart sounds. Due to the small 
number of healthy participants recorded, the decision was 
made to attempt to differentiate between the five participants 
who presented with Aortic Stenosis (AS), and the fifteen 
participants who did not present with AS. 

III. DATA ANALYSIS 

A. Signal processing 
The ZBM is equipped with a built-in low-pass 80 dB anti-
aliasing filters for each of its channels. The signals were 
sampled at a frequency of 5120 Hz, which was sufficiently 
high to capture all the relevant heart murmur data [7]. The 
LDV data showed the presence of signal drop-outs, which is 
a common phenomenon experienced by optical sensors 
when an “optically rough” surface is recorded. As the sur-
face moves, the amplitude of the Doppler-shifted signal re-
flected back to the LDV’s signal demodulation unit falls 
below the minimum threshold required for the unit to be able 
to derive an analogue velocity waveform, and the signal 
“drops” away.  These dropouts were removed from the rec-
orded LDV signal using a modified global least-squares 
method adapted from Vanlanduit et al. [8]. The LDV data 
was then divided into two separate streams which underwent 
different processing. Each stream was used to extract differ-
ent diagnostic data.  
 

Stream 1 was digitally filtered with a band-pass 4th order 
Butterworth filter with cut-off frequencies of 15 Hz and 700 
Hz. This produced a waveform similar to the phonocardio-
gram [3].  Stream 1 was then further denoised using wavelet 
analysis with a db7 mother wavelet, and Ensemble Empirical 
Mode Decomposition (EEMD) filtering. Stream 2 was fil-
tered with a low-pass 4th order Butterworth filter with a cut-
off frequency of 700 Hz. This yielded the velocity profile of 
the LDV data. Figure 2 shows the differences in the two 
streams. 
 
The Stream 1 data were used to extract features for automat-
ed diagnosis while Stream 2 data were used for visual in-
spection of the underlying velocity characteristics of the 
various pathologies which were recorded. While no time-
domain features were used in the automated diagnosis, fu-
ture work could explore the time domain features in greater 
depth. 
 
The recorded ECG data was used to segment the LDV data 
into the underlying heart sound cycles. The software used to 
record the ECG data could only record 10 seconds of ECG 
data, which was insufficient to record an adequate number of 
heart sound cycles. A second method was therefore used to 
segment the LDV data for which there was no ECG data. 

 
Fig. 2. The two filtered LDV data streams. Stream 1 was band-pass (BP) 
filtered and Stream 2 was low-pass (LP) filtered. 

This method was based on a simplicity curve as proposed by 
Nigam and Priemer [9] to find the underlying heart sounds. 
The simplicity curve contrasts the much simpler waveform 
structure of heart sounds with the more complex noise be-
tween the heart sounds. Such a curve is shown in Figure 3. 
The intersection of a threshold value and the simplicity 
curve was used to determine the start of the heart sounds. 
The chosen threshold value of 0.35 was the value which 
consistently gave the best approximation for S1 across all 
the participant recordings.  Figure 4 shows a comparison of 
the segmentation as calculated using the ECG and the sim-
plicity curve. It can be seen from Figure 4 that the two 
methods produce nearly identical results. 
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Fig 3. The simplicity curve calculated from the LDV data. The intersections 
of the simplicity curve and threshold line was taken as the start of the heart 
sounds. 

B. Feature extraction 
Stream 1 is used for feature extraction. The two-feature sys-
tem proposed by Jiang et al. [7] was adopted for this work. 
The full heart sound cycle, the systolic and the diastolic 
segments were transformed using the Power Spectral Densi-
ty (PSD). Two features were extracted from each PSD: Fmax 
and Fwidth (as shown in Figure 5). The threshold value t is the 
normalized value where Fwidth is calculated. The optimum 
value, t = 0.6 was selected by testing various t values that 
resulted in the lowest classification error. A total of six fea-
tures were extracted from each heart sound cycle: the Fmax 
and Fwidth of the full heart sound cycle, the diastolic compo-
nent and the systolic component of the same cycle.  
 

 
Fig. 4. A comparison of segmentation results calculated from an ECG (red 
dotted line) and the simplicity curve (green dotted line) for a participant 
with normal heart sounds. The ECG and simplicity curve methods give 
similar results. 

 
Fig 5. Extracted features Fwidth and Fmax from a full heart sound cycle at 
normalized threshold value t. 

C.  KNN Classification 
In order to determine whether the LDV data could be used as 
part of an automated diagnostic system, a proof of concept 
classifier was trained. K-nearest neighbors (KNN) was se-
lected due to the ease of training [10].  
 
KNN classifiers work on the principle that a point is classi-
fied according to the value of the K nearest points to it in the 
training data. These points ‘vote’ and the majority then de-
fine to which class the new point is assigned. To avoid dis-
torting the classifier’s performance, the data of the partici-
pant being classified was excluded from the training data. 
The results from all of the cycles of the participant were 
added together and the majority class decided which pathol-
ogy the participant would be classified as. 
 

IV. RESULTS 
Due to the low number of healthy participants, the classifier 
was trained to distinguish between AS and those without 
AS. Table 1 shows the classification of each participant as a 
percentage of the total number of cycles classified. From the 
results it can be seen that the classifications generally were 
strongly either AS or NOT AS, with only Participant 4 and 
18 showing approximately equal numbers of AS and NOT 
AS samples. Participant 12 was the only participant who 
could not be classified correctly. No combination of K and t 
resulted in the correct classification of Participant 12. 
 
Table 1. Individual results for each pathology for AS or NOT AS classifica-
tion as a percentage of the total number of cycles classified for K = 3 and a 
normalized threshold of t = 0,6. The green highlighted results indicate cor-
rectly classified participants, and the yellow indicates incorrectly classified 
participants. Only Participant 12 was incorrectly classified. 
 
Participant 1 2 3 4 5 6 7 8 9 10 
NOT AS 80 90 25 45 80 100 30 75 95 100 
AS 20 10 75 55 20 0 70 25 5 0 
Participant 11 12 13 14 15 16 17 18 19 20 
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NOT AS 70 90 90 95 95 80 70 40 95 79 
AS 30 10 10 5 5 20 30 60 5 21 
 
As a measure of the classifier’s performance, the sensitivity 
and specificity are calculated as per Equation 1 and Equa-
tion 2 respectively, where TP is true positives, TN is true 
negatives, FP is false positives, and FN is false negatives.  
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
# 𝑇𝑃

#𝑇𝑃 + #𝐹𝑁 
                [Eq 1] 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
# 𝑇𝑁

#𝑇𝑁 + #𝐹𝑃 
               [Eq 2] 

  
The classifier in the current work achieved a sensitivity of 
80% and a specificity of 100%. 

V. DISCUSSION 
This paper investigated possibility of using the LDV as a 
part of an automated diagnostic system. Six frequency do-
main features were extracted from each of the heart sound 
cycles and used to train a KNN classifier with a sensitivity 
of 80% and a specificity of 100%. The results obtained from 
the proof of concept classifier indicate that it is likely possi-
ble to use the LDV data in an automated diagnosis system. 
The generalizability of this result is yet to be determined due 
to the limited number of participants recorded for the current 
work.  

VI. CONCLUSION 
Due to the small sample size used in the work, it is recom-
mended that the study be repeated with a larger number of 
participants, and specifically more healthy participants. With 
a larger number of data points the results would be more 
generalizable. Different classifiers could also be investigat-
ed, such as a neural network which could potentially be ex-
tended to a classification system which can differentiate be-
tween more than two pathologies at a time. 
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