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Abstract—This paper presents two low complexity and yet 

robust methods for automated seizure detection using a set of 2 

intracranial Electroencephalogram (iEEG) recordings. Most 

current seizure detection methods suffer from high number of 

false alarms, even when designed to be subject-specific. In this 

study, the ratios of power between pairs of frequency bands are 

used as features to detect epileptic seizures. For comparison, 

these features are calculated from monopolar and bipolar 

iEEG recordings. Optimal thresholds are individually 

determined and used for each feature. Alarms are generated 

when the measure passes the threshold. The detector was 

applied to long-term continuous invasive recordings from 5 

patients with refractory partial epilepsy, containing 54 seizures 

in 780 hours. On average, the results revealed 88.9% 

sensitivity, a very low false detection rate of 0.041 per hour (h-1) 

and detection latency of 9.4 seconds.  

Index Terms – Seizure detection, bipolar analysis, power 

spectral density. 

I. INTRODUCTION 

High amplitude electrical activity with complex patterns 

is generated by the brain during epileptic seizures, lasting 

from seconds to minutes. Because the brain produces so 

many patterns of activity, distinguishing a seizure from 

normal electrical behavior in real-time is difficult. Epilepsy 

affects approximately 1% of the world population and 

affects people of all ages. Electroencephalography (EEG) 

recordings are commonly used to diagnose epilepsy and for 

pre-operative studies to identify the seizure focus. 

Continuous monitoring is also essential in clinical drug 

trials. Currently, the EEG data is typically analyzed by a 

neurologist with little aid from machine learning algorithms. 

However, data sets are becoming much larger and more 

common due to the availability of compact high volume 

storage devices on portable EEG recording instruments. 

Digitizing the signals has pushed sampling rates up to kHz 

range. Continuous long-term multichannel recordings 

produce huge amounts of data, sometimes up to several 

hundred megabytes for a single recording channel. The 

increasing size of the data necessitates the development and 

use of automated and intelligent algorithms for processing 

EEG signals. Automatic labeling of the seizure onsets can 

facilitate long term monitoring and diagnosis where 

researchers and neurologists can be referred to the labeled 
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recordings. Furthermore, automated monitoring algorithms 

will enable real-time monitoring of EEG. This could 

eventually lead to closed-loop therapies for fast-acting 

injection devices, vagus nerve stimulation, or deep brain 

stimulation [1]. Such portable devices should be of low 

power budget and miniature in size, and designed using low-

cost and fast algorithms for online processing of huge 

amounts of data [2]. 

There are many existing seizure detection algorithms.  

They usually seek to optimize one of two competing goals; 

(1) fast seizure onset detection: real-time detection of 

epileptic seizures with negligible delay from onset [3-6], and 

(2) accurate seizure event detection: the accurate labeling of 

the occurrence of seizures with high sensitivity and 

specificity [7-10]. The first approach is best suitable for 

closed-loop therapeutic as well as for patient care systems, 

where only onset detection delay times of few seconds can 

be tolerated. Second approach is more appropriate for offline 

labeling of recorded EEGs for further studies, and can 

tolerate longer detection lags.  

EEG patterns can change significantly according to the 

daily living conditions, such as the level of activity, 

awareness, sleep stage, and tiredness, increasing the 

complications of seizure detection problem. Also, the 

patterns of ictal activities usually vary from patient to 

patient, and even from seizure to seizure within the same 

patient. Meier et al. have developed a machine learning 

approach to detect seizures by categorizing morphological 

ictal rhythms into six categories based on the frequency of 

the dominant rhythm and then training a multiclass support 

vector machine (SVM) to detect different types of seizure 

onsets [4]. Shoeb et al. [5] proposed a patient-specific 

seizure onset detection using the energies of frequency 

bands selected from 0-25 Hz, extracted from each of N 

recording channels. The spectral and spatial relations 

between channels were captured simultaneously and fed to 

the SVM classifier.  

High number of false detections is the main drawback of 

most current approaches, which makes them unacceptable 

for clinical applications. Furthermore they have been applied 

mainly on short recordings, and have not been validated 

satisfactorily for long-term continuous recordings that are 

several weeks long, including extensive interictal periods.  

A. Approach  

Seizures are characterized by having highly synchronous 

activities starting in specific frequency range(s), which 

decrease as the seizure proceeds (Fig. 1). By visual analysis 

of time-frequency representation of seizures, it was apparent 
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(a) Monopolar signal 

 
(b) Bipolar signal 

Fig. 1. Time-frequency representation iEEG signal of 2 minutes 
hippocampal iEEG for a studied seizure. Onset time is 30th second. 
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that the spectral power in a single narrow band of iEEG 

signals, e.g., 13   Hz (Fig. 2), mostly increases. This 

phenomenon is the result of synchronous firings of neurons, 

highly affecting the electrical fields’ intensities. This 

synchronous activity for some seizures is observed in other 

frequency bands as well, usually recurring similarly at both 

higher and lower order harmonics. Therefore, in order to 

account for most of the seizures, and develop robust 

algorithms for unseen seizures, we have considered the 

frequency range of 9-18 Hz, covering synchronous activities 

from almost all studied epileptic seizures. 

This paper makes two contributions. First, it proposes 

two generalized seizure detection methods using relative 

spectral power features extracted from monopolar and space 

differential (bipolar) recordings to improve the parameters of 

sensitivity and specificity. The spectral power features are 

computationally very efficient [11], and suitable for low-

power implantable devices. Second, it evaluates the 

efficiency of proposed features on long-term continuous 

iEEG recordings that are longer than 1 month. 

II. METHODOLOGY 

A. Subjects 

Long-term continuous multichannel iEEG recordings of 

five patients with refractory partial epilepsy from the 

European Epilepsy Database [12] were used. All patients 

were monitored through intracranial electrodes with 

sampling rate of 1 KHz. Onset times, and their initialization 

and propagation on the electrodes were marked by 

epileptologists by visual inspection of iEEG recordings and 

using video recordings of patients during their stay in 

hospital. Information of both electroencephalographic and 

clinical onsets/offsets is available in the database, and 

electroencephalographic onsets were considered for this 

study. Among tens of recording electrodes available in the 

database for each patient, the iEEG signals recorded from 

two adjacent invasive electrodes close to the focal area were 

selected for further processing. Patient characteristics are 

summarized in Table I. 

Table I. Information for the 5 studied patients 

ID Sex 
Patient 

age 

Onset 

age 

Localization of 

seizures* 

Recording 

time (h) 

No. of 

seizures 

Mean seizure 

duration [s] 

A f 29 10 RMT, RLT 183 9 82.3 

B f 32 1 LMT 162.6 9 121.9 

C f 11 3 RMT 155 14 122.7 

D f 32 8 RBF, LMT, RMT 151.6 9 122.5 

E f 18 6 L-T, L-F 127.8 13 86.5 

Mean  24.4 5.6  780 54 107.1 
* Localization of seizures: RMT/LMT (right/left mesial temporal lobe), RLT (right 

lateral temporal lobe), RBF (right basal frontal lobe), L-T (left temporal lobe), L-F 

(left frontal lobe). 

B. Feature extraction 

The power spectral densities (PSD) of monopolar and 

bipolar windowed iEEG signals were estimated using the 

Welch's method [13]. The PSD is a measure of the power at 

each frequency within a signal. The absolute values of 

spectral power features were calculated by (1),  

    ∑       
 

 (1) 

where    is the spectral power of i-th frequency sub-band, 

and x is the windowed iEEG signal. The PSD was calculated 

in 4 second windows with a 75% overlap leading to a 

classification every second. From the PSD, ratio of power 

between different frequency bands was calculated. 

B.1. Relative monopolar spectral power 

Beside an increase in the spectral power of Alpha band, 

the spectral power of low frequency Delta waves (0.5-3 Hz) 

also would be reduced by initiating the seizure. Therefore 

the spectral power within 9-15 Hz was divided by the 

spectral power of Delta band, to highlight the changes (2), 

     ∑       
      

 ∑       
       

 (2) 

where prm is the relative monopolar spectral power feature. 

 
(a) Monopolar signal 

 
(b) Bipolar signal 

Fig. 2. Power spectral density (PSD) for frequency range of 0.25-25 

Hz, and for interictal and ictal iEEG recordings of a studied seizure. 
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B.2. Relative bipolar spectral power 

EEG recordings are technically bipolar by nature, since 

they are recorded with reference to a fixed electrode. By 

tradition, however, these channels are called monopolar, and 

the difference of two monopolar channels, selected 

physically in close proximity is known as bipolar. In contrast 

to the conventional EEG, the bipolar approach is less 

susceptible to artifacts [14]. Bipolar processing can remove 

common mode interferences mounted evenly on two 

adjacent electrodes. These common mode interferences may 

include power line noise (50 or 60Hz and their harmonics) 

and muscle artifacts (EMG). Moreover, topographical 

variations invisible to monopolar recordings can be 

identified using bipolar schemes [15]. Bipolar channels were 

derived by computing difference of two immediately 

adjacent monopolar electrodes on the focal area, in order to 

capture synchronization in a small part of the brain. By 

examining ratios of different spectral powers extracted from 

bipolar signals for several patients, we considered the 

spectral power within 12-18 Hz divided by spectral power of 

0.5-3 Hz as a measure to detect the presence of epileptic 

seizures (Fig. 1, Fig. 2).  

     ∑       
       

 ∑       
       

 (3) 

It is expected that this measure increases either too much 

throughout the whole seizure onset, or at least by a 

significant amount in some part of seizure propagation. 

C. Preprocessing of features 

The synchronous epileptic neuronal activities last for 

several seconds, thus applying smoothing (rectangular 

moving average window of 4 consecutive samples) 

decreases the likelihood of short synchronous events that are 

not ictal from reaching threshold. This preprocessing leads 

to an increase in the detection latency by about 2 seconds but 

greatly reduces the number of false alarms. 

D. Alarm generation and evaluation 

A threshold based classifier is subsequently applied on 

the preprocessed features. An alarm is generated when the 

features exceed a threshold; the alarm generation is then 

blocked for 4 minutes. The average of each feature for the 

first 30 minutes of recordings and for each patient was 

calculated, and k-times that average value was used as a 

threshold. As the optimum threshold values vary for each 

patient, therefore k values were chosen individually.  

Sensitivity (SS), false detection rate (FDR), and average 

detection latency (DL) of the raised alarms were used to 

evaluate the methods. Sensitivity is the fraction of correctly 

detected seizures within the total seizures, the FDR value is 

the number of false detections per time unit (hour), and the 

DL is the average time interval (in second) between seizure 

onsets and true alarms raised for a patient.  

The Euclidean distance between the resulting point (SS, 

normalized FDR, normalized DL) and the optimal 

performance point (SS=100, FPR=0, DL=0) of the raised 

alarm, was used to find the proper threshold value (k) for 

each patient. The optimal threshold should be selected so 

that this distance is minimized. Normalized FDR and DL 

values were used instead of the actual FDR and DL ones in 

order to limit their effect on the selection of proper 

threshold. Fig. 3 illustrates the results of bipolar measure for 

one of the studied patients.  

III. EXPERIMENTAL RESULTS 

The ratio of spectral power calculated from monopolar 

and bipolar iEEG recordings were evaluated on recordings 

from 5 patients from the European Epilepsy Database. The 

total data set contained 54 seizures over 780 hours of 

continuous multichannel recordings. Table II summarizes 

the sensitivity, false detection rate, and average detection 

latency of alarms for using the monopolar spectral power, 

monopolar relative power and bipolar relative power. On 

average, monopolar spectral power between 9-15 Hz 

frequency detected 75.9% of the seizures (41 of the 54 

seizures), with a FDR of 0.155h
-1

 (121 false alarms in 780h), 

and an average detection latency of 24.4s. The power 

spectral ratio from the monopolar recordings detected the 

presence of epileptic seizure onsets with sensitivity of 85.2% 

(47 out of 54 onsets) with a FDR of 0.027h
-1

 (21 false alarms 

in 780h), and an average detection latency of 15s. The power 

spectral ratio from the bipolar recordings had slightly higher 

sensitivity of 88.9% (48 out of 54 onsets), but a slightly 

worse FDR of 0.041h
-1

 (32 false alarms in 780h), with a 

better detection latency of 9.4s. Fig. 4 presents proposed 

relative measures obtained for one of the seizure onsets.  

The presented sensitivities were achieved by a tradeoff 

between SS and FDR. However the higher sensitivities could 

be reached by setting lower threshold values, which lead to 

higher number of false alarms. There are few false alarms 

that could not be avoided even by optimizing the threshold 

value. After visual inspection of related iEEG recordings of 

these false alarms, we found that almost all of them 

 
Fig. 3. Relative bipolar spectral power feature for entire recording from 

patient A. Black line is power ratio, the red dotted lines, seizure onsets. 

 
Fig. 4. Relative monopolar/bipolar spectral power features for a studied 

seizure. Seizure onset is 60th second (vertical dotted red line). The 
horizontal dotted lines indicate threshold values of each measure. 
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Table II. Results of spectral power features for 5 studied patients 

Patient 

ID 

 Relative monopolar spectral power  Relative bipolar spectral power  Monopolar spectral power 

 SS% FDR(h-1) DL(s) Thresh.(k)  SS% FDR(h-1) DL(s) Thresh.(k)  SS% FDR(h-1) DL(s) Thresh.(k) 

A  88.9 0.011 18.5 70  100 0.016 7 30  55.6 0.251 62.8 50 

B  88.9 0.006 24.7 60  100 0.049 19 40  88.9 0.012 22 250 

C  92.9 0.065 6.3 30  85.7 0.097 4.8 20  85.7 0.032 12.3 45 

D  55.6 0.013 20 25  55.6 0.013 23.6 25  55.6 0.118 35 25 

E  100 0.047 13.8 25  100 0.031 3.1 5  84.6 0.391 17.1 90 

Mean  87.04 0.027 15.04 42  88.9 0.041 9.37 24  75.93 0.155 24.4 92 

 
presented ictal-like activities, and we assume that they are 

probably subclinical seizures not marked in the database as 

epileptic seizure onsets. The FDR was significantly 

improved by using the bipolar features as compared to 

unipolar. Furthermore, the parameters of SS and average 

detection lag were improved  notably. 

A. Comparing with mean phase coherence (MPC)  

We have recently developed a seizure detection method 

using sub-band mean phase coherence (sub-band MPC) [16]. 

The raw iEEG data of two adjacent electrodes was first 

band-pass filtered using forward-backward method to obtain 

desired frequency bands. Subsequently, the mean phase 

coherence (MPC) measure of each sub-band was calculated. 

In the present study the same data (patients, channels) were 

used. Table III compares the results of the proposed methods 

here with sub-band MPC method in terms of SS and FDR. 

On average, the sub-band MPC method could provide a 

sensitivity of 79% with a low false detection rate of 0.05h
-1

. 

The relative bipolar spectral power could improve both 

parameters of SS and FDR, while requiring significantly less 

computational cost than the sub-band MPC. 

Table III. Comparing the results of proposed method and sub-band MPC 

ID 
 Relative bipolar spectral power  Sub-band MPC 

 SS% FDR(h-1) Freq. band  SS% FDR(h-1) Freq. band 

A  100 0.016 12-18 / 0.5-3  78 0.06 12-18 Hz 

B  100 0.049 12-18 / 0.5-3  78 0.05 4-8 Hz 

C  85.7 0.097 12-18 / 0.5-3  71 0.09 12-18 Hz 

D  55.6 0.013 12-18 / 0.5-3  66 0.02 12-18 Hz 

E  100 0.031 12-18 / 0.5-3  100 0.04 12-18 Hz 

M.  88.9 0.041   79 0.05  

IV. CONCLUSION 

Very low complexity and yet robust epileptic seizure 

detection methods are proposed. These methods can achieve 

high detection sensitivity and a very low FDR. The methods 

use the PSD of iEEG signal, which requires very low 

computational cost. The proposed methods are suitable for 

clinical applications and can be implemented in portable 

low-power budget devices for real-time monitoring of 

patients. The detection lag of the bipolar method is less than 

the unipolar method, while providing almost similar 

sensitivities and FDRs. Future work may be directed at 

applying the bipolar method for epileptic focus localization. 

By comparing the features extracted from paired channels of 

different brain regions, it may be possible to detect channels 

at the seizure focus that have greater variations during the 

seizure initiation. 
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