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Abstract— Ensuring robustness of myocontrol algo-
rithms for prosthetic devices is an important challen-
ge. Robustness needs to be maintained under nonsta-
tionarities, e.g. due to electrode shifts after donning
and doffing, sweating, additional weight or varying
arm positions. Such nonstationary behavior changes
the signal distributions – a scenario often referred
to as covariate shift. This circumstance causes a si-
gnificant decrease in classification accuracy in daily
life applications. Re-training is possible but it is time
consuming since it requires a large number of trials. In
this paper, we propose to adapt the EMG classifier by
a small calibration set only, which is able to capture
the relevant aspects of the nonstationarities, but re-
quires re-training data of only very short duration. We
tested this strategy on signals acquired across 5 days
in able-bodied individuals. The results showed that an
estimator that shrinks the training model parameters
towards the calibration set parameters significantly
increased the classifier performance across different
testing days. Even when using only one trial per class
as re-training data for each day, the classification
accuracy remained > 92% over five days. These results
indicate that the proposed methodology can be a
practical means for improving robustness in pattern
recognition methods for myocontrol.

I. INTRODUCTION

Pattern recognition methods have been extensively
investigated as a means for controlling upper limb pros-
theses with EMG signals for the last decades [1]. Clas-
sifiers such as linear discriminant analysis (LDA) or
support vector machine (SVM) [1], [2] show a high perfor-
mance in myoelectric prosthesis control. However, these
experiments were usually conducted under laboratory
conditions. Unfortunately these controlled experimental
conditions are of a limited relevance when translated into
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real prosthesis use in daily life activities. Laboratory tests
indeed often do not include nonstationarities [3] and thus
exhibit little robustness.

Factors that influence robustness include electrode
shifts following donning and doffing, changes in arm
position, variable loads when grasping objects, muscle
fatigue, and varying electrode-skin impedances. An illus-
tration of the potential impact of such nonstationarities
in the example of electrode shifts is given in Fig. 1.
A first attempt to mitigate the effect of those factors
was investigated in [4]. In this and following studies,
the main strategy has been the inclusion of examples
of nonstationarities in the training set, thus increasing
the generalization ability of the classifier to non-ideal
conditions. Although this approach may improve the ro-
bustness, it requires massive (and often unfeasible) data
recording efforts. Moreover, there are also factors, e.g.
changes in user behavior, that cannot be easily included
during training. Alternatively, it has been proposed to
include a full calibration every day [1],which, however, is
very demanding for the user.

We address the problem of robustness over changes
in subject and recording conditions by adapting the
algorithm to the daily conditions. This is accomplished
by a short calibration set of signals that requires < 1 min
for recording, so that the approach is practically feasible.
We tested this approach on a large set of signals and
the results showed that the proposed methodology is an
appropriate compromise between a limited training time
and a substantial improvement of classification accuracy.

II. METHODS
A. Dataset

The study was approved by the local ethics committees
and involved six able-bodied subjects (five male, one
female, age 25±2 yrs). For comparison, the subject group
contained 2 experienced and 4 naive subjects. The data
were recorded with eight commercially available double
differential electrodes (13E200=50AC Otto Bock Heal-
thcare Products GmbH, Vienna, Austria) placed equi-
distantly around the dominant forearm, approximately
7 cm to the olecranon.

1) Experimental setup: On five subsequent days, the
subjects performed 8 movements: wrist pronation (WP),
wrist supination (WS), wrist extension (WE), wrist fle-
xion (WF), hand opening (HO), fine pinch (FP), key
grip (KG), and no movement (NM). On the basis of
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Fig. 1. Illustration of the possible effect of electrode shifts for
the classification between two movements: Hand Open (HO) and
Extension (EX). The optimal separation hyperplane for the first
day data, shown as black vertical line, performs worse on the data
of the second day and fails completely on the data of the third day.
For a two dimensional representation, the data were projected on
the first LDA and PCA component, respectively [5].

visual feedback, the subject performed each movement
at three contraction forces (30, 60, and 90% maximum
long-term voluntary contraction, MLVC). We recorded
five trials for each movement and each contraction level.
This led to a total of 8 classes × 3 contraction levels
× 5 repetitions = 120 trials for each day. One trial
comprised 5 s of data recording. In the first second, the
subject increased the muscle force to the target force,
then he/she maintained the target force for 3 s, followed
by relaxation. For the following analyses, we used only
the 3-s recording intervals where the subject maintained
a constant force level. On the first day, the electrode
positions were marked with a pen on the skin, so that the
same positions could be reproduced across days. Fig. 2
illustrates the data segmentation, where Rn, n = 1, . . . , 5
includes the trials of all movements for one particular
contraction level.

2) Signal acquisition and processing: The acquired raw
signals were amplified to the range 0-4.5 V and filtered
in the bandwidth 20-450 Hz, with the inclusion of a 50-
Hz notch filter by the active Otto Bock electrodes. The
data were sampled at 1 kHz, digitized by a 10 bit A/D
converter, and transferred to a computer via Bluetooth
by the Axonmaster (Otto Bock HealthCare Products
GmbH, Vienna, Austria).

3) Feature extraction: As proposed in [6], the loga-
rithm of the signal variance (logVAR) was calculated
from the raw EMG data. The logVAR features were
computed from 250-ms intervals, which overlapped by
50 ms (15 samples per trial).

B. Mathematical Background
In this study, we focused on multi-class classification

problems. We consider two Bayesian Classifiers: quadra-
tic discriminant analysis (QDA), that determines qua-
dratic decision boundaries and linear discriminant analy-
sis (LDA), that uses hyperplanes for class separation. For
an optimal classification we would classify an unknown
point x according to the largest posterior probability [7].

MLVC
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Fig. 2. Illustration of the data segmentation, where Rn, n =
1, . . . , 5 includes the trials of all movements for one particular
contraction level. The classifier was trained on one day (exemplary
on Day 1 (green)), adapted by one run of the test day (orange) and
tested on all other runs of the same day (blue).

Since in practice the posterior probabilities cannot be ob-
tained directly, we estimate them using the training data.
Let X = {(xi, yi)n

i=1}, n ∈ N be the training samples,
where xi ∈ Rd, d ∈ N and yi ∈ {1, . . . , C}. Given the
prior probability πc = 1/C for each class c ∈ {1, . . . , C}
and the class-conditional density functions fc(x) of X, we
can estimate the class posteriors probabilities by Bayes
Rule

Pr(c|x) := fc(x)πc∑C
l=1 fl(x)πl

. (1)

Now, we assume that the data are Gaussian distribu-
ted and substitute fc(x) with the multivariate Gaussian
distribution

p(x, c) = 1√
(2π)d|Σc|

exp
(
− 1

2 x̂
>Σ−1

c x̂
)
, (2)

where x̂ := x − µc. By taking additionally the natural
logarithm of Equation (1), the quadratic discriminative
function (QDA) δ1

c for each class c results in

δ1
c (x) := −1

2 log |Σc| −
1
2 x̂
>Σ−1

c x̂+ logπc. (3)

Assuming further that all classes share the same co-
variance matrix, Eq. (3) can be rearranged to the linear
discriminant function (LDA) δ2

c

δ2
c (x) := x>Σ−1µc −

1
2µ
>
c Σ−1µc + logπc, (4)

where Σ = 1
C

∑C
c=1 Σc is the pooled covariance matrix.

Finally, for applying QDA (j = 1) and LDA (j = 2),
an unknown point x∗ ∈ Rd is allocated to the class with
the highest probability, respectively

y∗ = arg max
c
δj

c(z), (5)

where y∗ ∈ {1, . . . , C}.
However, due to the previously discussed nonstationa-

rities and the resulting covariate shift (cf. [8]), the test
distribution pte(x) potentially differs from the training
distribution ptr(x): ptr(x) 6= pte(x). In this situation, the
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Fig. 3. Illustration of a) QDA and b) LDA adaptation performance. In both cases, applying the mean adaptation results in a remarkable
improvement of classification accuracy across days. Additional inclusion of the adapted covariance matrices only results in a slight
improvement in the case of QDA. Solely using the new calibration data for training of a completely new classifier slightly improves
the performance but performs worse than the adapted classifiers.

trained decision boundaries potentially are no longer en-
suring a satisfactory class separation and an adjustment
of the trained classifier to the changed data distribution
is needed. Accordingly, in the following we propose an
adaptation methodology, that, given a small calibration
data set, adjusts the training model parameters towards
the calibration set parameters.

C. Adaptation
The adaptation was done by a small calibration data

set Xcal = {ti, ui}m
i=1, m ∈ N, which follows the test dis-

tribution Xcal ∼ pte, where ti ∈ Rd and ui ∈ {1, . . . , C}.
Let µcalc and Σcalc be the mean and the covariance

matrix of Xcal and µtrc and Σtrc the ones of the training
set X. We introduce an adaptation by shrinking the
training parameters towards the ones obtained from the
calibration set:

µ̃c = (1− τ)µtrc + τµcalc, (6)

and

Σ̃c = (1− λ)Σtrc + λΣcalc, (7)

where τ and λ ∈ [0, 1] are the regularization parameters.
The optimal values for τ and λ where estimated by a grid
search with a step sizes of 0.1 across all days and subjects.
In case of optimizing only one shrinkage parameter, the
other is held at zero.

D. Evaluation procedure
The proposed adaptation scheme was evaluated offline

with a reverse leave-one-out cross validation. The data
were split as shown in Fig. 2 and the entire data set of one
day (green) was used as initial classifier training set. For
testing on different days, one trial for each class (orange),
denoted as run, was used as calibration set Xcal (thus, a

total of 24 s of data including all classes). All other trials
were used as test set (blue) for which the classification
accuracy was calculated. In this way, we proceeded for
each run and computed the average over all results.

III. RESULTS
The results are presented as average over the six

subjects.

A. Covariate shift adaptation
A QDA classifier was trained on the complete data set

of the first day and tested on all the other days (green
in Fig. 2). Starting with an accuracy > 95% on the
same day as training, there was a decrease in accuracy
of almost 30% on the next days. The QDA performance
dropped substantially when tested on the 2nd to 4th day
and recovered only slightly on the last day. The results
are shown as a green curve in Fig. 3 a). The optimal
values for λ and τ were determined by a grid search and
the results are shown in Fig. 4.

Firstly, a QDA adaptation by shrinking only the mean
of the QDA to the mean of the calibration set was
evaluated (QDAMA: (τ = 0.8, λ = 0)). In a second
investigation the covariance matrix was additionally ad-
apted and we denote this adaptation as QDA covariance
mean adaptation (QDACMA: (τ = 0.8, λ = 0.7)).
Lastly, QDAnew (τ = 1, λ = 1) denotes the classifier
being trained only on the small calibration data set to
compare the adaptation performance. With respect to
the QDA performance the mean adaptation (QDAMA),
displayed as red curve in Fig. 3 a), considerably improved
the classification accuracy for each day. Furthermore, an
additional performance gain was obtained by adapting
the covariance matrix (QDACMA), even though the
increase with respect to QDAMA was relatively small.
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Fig. 4. Illustration of the grid search for finding the optimal
adaptation parameters τ and λ for QDA. A continuous performance
increasing was preserved by shrinking the mean of the training set
versus the mean of the calibration set, where the optimal value was
τ = 0.8. Shrinking additionally the covariance matrix by λ = 0.7 a
further, but relatively small performance gain was obtained.

QDAnew was on average better than the old QDA but
worse than both QDA adaptation variations.

The same adaptation experiments were repeated for
LDA, where the optimal parameters for the mean adap-
tation (LDAMA: τ = 0.7, λ = 0) and for the additional
covariance matrix adaptation (LDACMA: τ = 0.6, λ =
0.7) were determined by using a grid search as shown
in Figure 4. The results are shown in Fig. 3 b). The
behaviors of the adaptation methods were similar to the
ones of QDA except that adapting the covariance matrix
additionally to the mean did not change the performance
notably.

B. Influence of force contraction level
It was further investigated, which contraction level, i.e.

30, 60 or 90% MLVC, should be used for adaptation.
Therefore the above experiment (shown in Fig. 3) was
repeated for each contraction level separately. Additio-
nally, each day was used once for training and all other
days for testing. The mean performance for the test days
is shown in Fig. 5. All adaptation scenarios outperformed
the non-adapted QDA. Furthermore, an adaptation with
60 or 90% MLVC was the best choice.

IV. DISCUSSION AND CONCLUSIONS
Among the many challenges in myocontrol of prosthe-

ses, we increased robustness over repeated uses by an
adaptive method, that alleviates the effects of nonstatio-
narities. For this purpose, we proposed an adaptation
scheme that only requires a 1-min recording of new
labeled data each day. The results demonstrated the
gain in classification accuracy when using the proposed
methodology in comparison to the non-adapted classifier
in an offline analysis for able-bodied subjects. Due to the
extensive training (2 hours for 5 days) in this study, on
average no absolute recognition accuracy difference was
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Fig. 5. A comparison of the QDACMA performance when using a
calibration set with 30, 60 and 90% contraction strength. Adapting
the QDA by a calibration set with 60 or 90% contraction strength
indicated the best performance.

found between the experienced and inexperienced subject
group. Further, the relative improvement trends achieved
with the proposed adaptive approach were the same for
all subjects, underlining the relevance of our method for
both experienced and novel users. Further studies on
users with transradial amputation are currently being
performed with promising preliminary results.
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