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Abstract— Myoelectric control can be used for a variety of
applications including powered protheses and different human
computer interface systems. The aim of this study is to inves-
tigate the formulation of myoelectric control as a multi-class
distance-based classification of multidimensional sequences.
More specifically, we investigate (1) estimation of multi-muscle
activation sequences from multi-channel electromyographic sig-
nals in an online manner, and (2) classification using a distance
metric based on multi-dimensional dynamic time warping.
Subject-specific results across 5 subjects executing 10 different
hand movements showed an accuracy of 95% using offline
extracted trajectories and an accuracy of 84% using online
extracted trajectories.

I. INTRODUCTION

Advancements in instrumentation and microprocessor
technologies have allowed the realization of portable sys-
tems capable of acquiring and analyzing multi-channel elec-
tromyographic signals in real-time. Such systems can be used
for a wide variety of applications including the control of
powered prostheses [5] and human computer interfaces [6].
The formulation of myoelectric control as the multi-class
classification of multidimensional sequences allows exten-
sion to multifunction control, where the number of the
functions controlled can exceed the number of channels of
EMG signals acquired. Sequence classification methods can
be grouped into 3 main categories [9]:
• Feature-based: A feature vector of a fixed length is

extracted to represent the sequence.
• Distance-based: A metric is defined to measure the

similarity between a pair of indices across a pair of
sequences.

• Model-based: Sequences are classified based on how
well they fit an assumed model.

This work adopts the formulation of myoelectric control as
a multi-class classification problem. Specifically, a distance-
based classification method is investigated. To the best of our
knowledge, this category of methods has not been previously
investigated for myoelectric control.
In this work, a specific multi-muscle activation sequence
is presumed to be mapped to a specific control function.
The multi-channel EMG activation-level signals associated
with a multi-muscle-activation sequence are referred to as a
trajectory and dynamic time warping (DTW) is used as a
distance measure between two trajectories. DTW is used as
a distance because it:
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• matches sequences of different lengths and therefore
there is no additional step required to convert the
trajectories into another form.

• is indifferent to the speed with which a mutli-muscle
activation sequence is performed as well as non-linear
distortions as shown in Figure 1.

A comprehensive survey of 8 common similarity measures
applied to 38 different data sets from a wide variety of
application domains showed supporting evidence that DTW
is the best distance measure for most domains [1]. Classifica-
tion based on multidimensional DTW (MD-DTW) was also
shown to perform as well as or to outperform classification
based on single-channel DTW [7].
In addition, the system presented here is expected to be
flexible. For the signals evaluated, electrode placement did
not assume careful placements such that each electrode was
associated with a particular muscle(s) and the methods are
designed to account for potential electrode movement. This
allows the electrodes to be easily applied/reapplied for signal
acquisition without the need for precise alignment with
anatomical landmarks.

Fig. 1. Example showing how dynamic time warping accommodate to
variations in the speeds of hand movement execution. Two trajectories
representing the same movement as executed by the same subject are
interleaved together. One trajectory is represented with dotted lines, while
the other trajectory is represented with solid line. The gray lines represent
every 15th alignment from one time instance of a trajectory to a time
instance in the other trajectory. In particular, in channel 5, it can be observed
that the dashed trajectory is corresponding to a slower movement. DTW
is shown to be able to account for this by aligning many time instances
from the trajectory corresponding to the slower movement to a single time
instance in the other trajectory.
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II. METHODOLOGY

A. System Overview

The information flow of the proposed system is shown in
Figure 2. Surface EMG signals are obtained from multiple
surface channels, say q. The signals are then preprocessed
to accentuate the electrophysiological contributions of in-
terest relative to other signals and noise. The preprocessed
signals are then rectified, smoothed and normalized to
obtain a multi-dimensional activation-level signal A(t) =
〈a1(t), ..., ai(t), ..., aq(t)〉. Each element in A(t) is expected
to be correlated to the level of contraction of a group of the
muscles that are relatively close to the detection surface of
the corresponding electrode.
The ith channel is assumed to be active at a given sample t,
if the activation-level ai(t) is significantly different from the
background activity. Still, a multi-muscle activation sequence
is only assumed to have occurred when a number of channels
are detected to be simultaneously active for a continuous
period of time.
Trajectory X is defined as the activation-level signals ob-
tained from the q channels between the detected onset sample
t0 and the end sample tf after being smoothed and circular
shifted.
For an application with m distinct control functions, a
training set R = {(X1, y1), ..., (Xl, yl), ..., (Xn, yn)} is
comprised of n labeled trajectories, where yl ∈ {c1, ..., cm}
is the label of trajectory Xl. In order to classify an unlabeled
trajectory, say Xk, the distance Ψ(Xl, Xk) based on MD-
DTW is calculated between Xl and each of the n labeled
trajectories. The label yk is set to the label of the trajectory
found to be closest to Xk.

Fig. 2. Information flow of the proposed system

B. Preprocessing

A high-pass Butterworth filter with corner frequency at 20
Hz and a 12 dB/octave roll-off is utilized for preprocessing.
It was shown in [4] that using a filter with this configuration

results in the best trade off between preserving EMG content
and eliminating artifacts due to electrode movement. Also,
high-pass filtering is expected to reduce crosstalk [8] by
attenuating contributions from muscle fibers distant from the
electrode.

C. Activation-Level Estimation

An activation-level signal (i.e. a signal related to the
level of activation of a muscle) can be calculated using
a surface detected EMG signal recorded from the active
muscle using the general schema of decoding, smoothing
and relinearization [2]. In this work, an activation-level
signal is calculated as the root-mean-square (rms) value
of the preprocessed EMG signal, which is equivalent to
decoding using squaring, smoothing by averaging over a
moving window of length ε, and relinearization by taking
the square root. Activation-level signals were shown to be
correlated to the level of muscle contraction [3], since they
are related to how many motor units are recruited and their
mean firing rates.
The characteristics of the background activity are
then captured by calculating the mean µrest =
〈µrest(1), ..., µrest(q)〉 and the standard deviation
σrest = 〈σrest(1), ..., σrest(q)〉 of the rms signals of
training examples labeled as ”rest”. In order to obtain an
activation level-signal, the rms signal of each channel is
divided by its corresponding µrest(i).

D. Activity Detection

The sample ai(t) of an activation-level signal is assumed
to be ”active”, if ai(t) ≥ γσrest(i)

µrest(i)
. As will be explained later,

the sample activity factor γ is induced using a training set
R so as to minimize confusion between examples labeled as
rest and other examples.
Extraction of a trajectory (i.e., detection of its onset t0 and
end tf ) is challenging because:
• The detection of a few isolated active samples does

not necessarily indicate the execution of a multi-muscle
activation sequence, since this activity is more likely to
be due to noise or electrode movement.

• The activation trajectory of a multi-muscle activation
sequence can be multi-phasic, meaning that it may
include more than one burst of activity separated by rest.
Therefore, the detection of rest following an activity
may not be suitable for the detection of tf .

In this study, two techniques for detecting t0 and tf were
investigated:

1) Offline Trajectory Extraction: For a given epoch of
multi-channel EMG activation-level signals, t0 is set to the
first sample at which a channel or more are detected to
be active, and similarly tf is set to the last sample. This
technique is not suitable for applications requiring online
myoelectric control and hence its name. It also assumes
that a single multi-muscle activation sequence is included in
each epoch. On the other hand, the main advantage of this
technique is that it has no problem extracting multi-phasic
trajectories.
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2) Online Trajectory Extraction: This technique can be
used for online extraction of trajectories (i.e., myoelectric
control) and is capable of detecting successive trajectories
from a streaming signal. As the sample t arrives, the number
of active channels u(t) is estimated using a window spanning
from t − τ to t. A channel is considered to be active and
consequently u(t) is incremented, when the ratio of active
samples in the window to τ is above the threshold δ.
Four events need to occur in the following order for a
trajectory to be detected:

1) u(t) exceeds a preset minimal number of channels α.
2) u(t) stays above α for τactive samples.
3) u(t) goes below α.
4) u(t) stays below α for τinactive samples.

For either the online or offline trajectory extraction tech-
niques, the sample activity factor γ is set to an integer
between 1 and 30 that minimizes the confusion in a training
set defined as the sum of (1) the number of times that a
trajectory is detected in a training set trial labeled as rest
and (2) the number of times that no trajectory is detected in
a training set trial that is not labeled as rest. For each value
of γ (between 1 and 30), the trajectory extraction technique
is applied and the confusion is calculated. γ is set to the
middle of the range over which the confusion is minimal.
Each extracted trajectory is decimated by the factor β. The
decimation is preceded by low-pass filtration to diminish
frequency components exceeding Fs

2×β yielding a trajectory
indexed by t̄ from t̄0 to t̄f .
In order to count for misalignment or movement of the elec-
trodes, the rows of the decimated trajectories are circularly
shifted by one in both directions yielding a trajectory rep-
resented using a matrix X ∈ Mq×(t̄f−t̄0)×3. The trajectory
has q rows (the number of channels), (t̄f − t̄0) columns (the
number of samples after decimation), and a depth of 3 (the
number of circular shifts).

E. Matching Using Multidimensional Dynamic Time Warp-
ing

MD-DTW is used to align two trajectories at a given circu-
lar shift, say χk and χl, diminishing the effects of different
execution speeds of the respective multi-muscle activation
sequences. Let the number of decimated samples in χk and
χl to be λk and λl, respectively. Also, let the alignment
between two arbitrary samples from the two trajectories, say
χk(:, t̄a) and χl(:, t̄b), be denoted as w =< a, b > and
the distance associated with this alignment be the Euclidean
distance between the two samples d(w).
MD-DTW searches for a path (i.e., a sequence of alignments
between pairs of samples P = 〈w(1), ..., w(j)....w(|P |)〉)
that minimizes the accumulated distance defined as:
ρ(λk, λl) =

∑|P |
j=1 d(w(j)) subject to the following condi-

tions:
• Boundary: w(1) = 〈1, 1〉 and w(|P |) = 〈λk, λl〉.
• Monotonicity: If w(j) = 〈a, b〉 and w(j + 1) = 〈c, d〉,

then c ≥ a and d ≥ b ∀j.
• Step size: If w(j) = 〈a, b〉 and w(j + 1) = 〈c, d〉, then
c− a ≤ 1 and d− b ≤ 1 ∀j.

The search for the path P can be obtained using dynamic
programming. Let P (a, b) be the optimal path from 〈1, 1〉
to 〈a, b〉 that minimizes the accumulated distance ρ(a, b)
obtained using the following recursive formula:

ρ(a, b) = d(a, b)+

min(ρ(a− 1, b− 1), ρ(a, b− 1), ρ(a− 1, b))
(1)

Deletion of a point in χk with respect to χl occurs when
min(ρ(a− 1, b− 1), ρ(a, b− 1), ρ(a− 1, b)) = ρ(a− 1, b).
Insertion of a point in χk with respect to χl occurs when
min(ρ(a−1, b−1), ρ(a, b−1), ρ(a−1, b)) = ρ(a, b−1). In
order to discourage large time differences in the alignments,
insertions and deletions are weighted differently in Equation
2:

ρζ(a, b) = d(a, b)+

min(ρζ(a− 1, b− 1), ζρζ(a, b− 1), ζρζ(a− 1, b))
(2)

where ζ > 1, ζ ∈ R.
In this work, the distance between χk and χl was defined
as ψ(χk, χl) =

ρζ(λk,λl)
|P | . The normalization is necessary to

account for the fact that matching different trajectories is
expected to result in paths having different lengths.
The MD-DTW accumulated distance between two trajec-
tories is obtained as ψ(Xk, Xl) = mins=−1,0,1(ψ(Xk(:, :
, s), Xl(:, :, 0)), i.e., the minimum distance obtained from
matching the depth of trajectory Xl(:, :, 0), representing no
circular shift, to each of the depths of Xk(:, :, s) representing
no shift and shifts of ±1. The distances between an unlabeled
trajectory and all labeled trajectories belonging to R are
calculated sequentially. The label of the unlabeled trajectory
is then assigned to the label of the closest labelled trajectory.

III. EMPIRICAL EVALUATION

An armband including 8 equally spaced surface electrodes
was placed around the right forearm. Five subjects partic-
ipated in this experiment. At the beginning of each trial,
the subject had his hand at rest. An instruction to perform
a specific hand movement was then displayed on a screen
placed in front of the subject followed by an instruction to
return to rest again. The 9 tested hand movements were finger
tap, right, left, swipe up, swipe down, swipe right, swipe left,
gun, and fist. The subject was required to perform 10 trials
for each hand movement. In another 10 trials, the subject was
required to keep his hand at rest. The signals were sampled
at 300 HZ.
The trials collected from each subject were dealt with as a
separate dataset. This means that for cross validation testing,
the trials used for testing were collected from one subject
and matched to trials collected from the same subject. 10
fold stratified cross validation was used, i.e., 10% of the
trials used for testing in each fold were chosen to belong to
different hand movements. For online trajectory extraction,
the trials used for testing were randomly concatenated to
simulate a random sequence of hand movements. µrest,
σrest, and γ were re-estimated in each fold for either online
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or offline trajectory extraction. Classification accuracies ob-
tained using offline trajectory extraction and online trajectory
extraction are given in Table I.

TABLE I
ACCURACY OF HAND MOVEMENT RECOGNITION FOR DIFFERENT

SUBJECTS BASED ON OFFLINE AND ONLINE TRAJECTORY EXTRACTION.

Trajectory Extraction
Average Over Trials

S1 S2 S3 S4 S5 Average Over
(%) (%) (%) (%) (%) Subjects (%)

Offline 88 97 96 97 99 95
Online 67 92 73 98 90 84

IV. DISCUSSION

The results presented in Tables I show the ability of the
MD-DTW accumulated distance ψ to discriminate between
the trajectories of different hand movements performed by
the same subject. This performance can be attributed to the
following reasons:

1) Activation-level signals disregard non-discriminative
aspects of EMG signals, such as the morphology
of constituent motor unit potentials. This results in
smoother and more discriminative trajectories.

2) MD-DTW is capable of accurately aligning trajectories
of the same hand movement executed at different
speeds.

3) MD-DTW is tolerant to temporally limited local vari-
ations in the trajectories, because the sequence of
alignments is selected to optimize the accumulated
distance over the complete lengths of the 2 matched
trajectories for all channels.

4) MD-DTW is capable of diminishing the effects of
irrelevant and/or mistakenly detected activities.

The discriminability provided by the proposed distance met-
ric was investigated using trajectories extracted based on
both online and offline extraction techniques. The trajectories
extracted offline are expected to be more complete, since
offline extraction has no problem with trials that have more
than one phase. This can explain the 11% improvement on
average compared to online extracted performance. There are
three likely reasons that can explain this decrease in accuracy
using online trajectory extraction:

1) failure of the online trajectory extraction technique to
link the phases in a given trial

2) inaccuracy of the detected onset and the end positions
3) propagation of error, i.e., an error in trajectory extrac-

tion and/or matching to the correct hand movement
results in an error in matching the following concate-
nated trial

The degree of variability across subjects is also clear in
Table I. Specifically, the first subject clearly produced the
least consistent activation trajectories. This can be explained
to some extent by the observation that online trajectory
extraction detected a single trajectory in only 76% of the
subject’s trials

The online extraction technique was tested by creating
simulated signals formed by concatenating randomly
selected trials. This might not represent the situation
in which a subject does not rest after the execution of
each hand movement. However, the use of the simulated
signal allows indirect investigation of (1) the possibility
of detecting more than one hand movement from a given
signal, and (2) the likelihood of detecting more than one
phase in one trial.
There is no confusion between rest and non-rest trials for
either online or offline extraction techniques. This suggests
that the activation-level signal is correlated to the level of
muscle contraction as assumed. It also suggests that the use
of a wrapper search to set the standard deviation δ factor is
effective.

V. CONCLUSION

This work demonstrates the potential utility of using
distance-based classification methods with multidimensional
sequences in the context of myoelectric control. Accumu-
lated distance based on MD-DTW alignments was shown to
be a particularly discriminative measure across trajectories
corresponding to different hand movements. An accuracy of
95% was achieved based on trajectories obtained using the
offline extraction technique. In order to step towards the real-
ization of online myoelectric control, we proposed an online
trajectory extraction technique. However, an 11% decrease
in accuracy was observed compared to the use of offline
trajectory extraction, which indicates the need for improving
the existing method for online trajectory extraction.
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