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Abstract— People with transradial hand amputations who
own a myoelectric prosthesis currently have some control capa-
bilities via sEMG. However, the control systems are still limited
and not natural. The Ninapro project is aiming at helping
the scientific community to overcome these limits through the
creation of publicly available electromyography data sources to
develop and test machine learning algorithms. In this paper
we describe the movement classification results gained from
three subjects with an homogeneous level of amputation, and we
compare them with the results of 40 intact subjects. The number
of considered subjects can seem small at first sight, but it is
not considering the literature of the field (which has to face the
difficulty of recruiting trans-radial hand amputated subjects).
The classification is performed with four different classifiers
and the obtained balanced classification rates are up to 58.6%
on 50 movements, which is an excellent result compared to
the current literature. Successively, for each subject we find
a subset of up to 9 highly independent movements, (defined
as movements that can be distinguished with more than 90%
accuracy), which is a deeply innovative step in literature. The
natural control of a robotic hand in so many movements could
lead to an immediate progress in robotic hand prosthetics and
it could deeply change the quality of life of amputated subjects.

I. INTRODUCTION

Hand prostheses controlled by surface electromyography
(sEMG) have been used since the late 1960s [1]. However,
they still have several important limits. First, usually they
offer only 2 or 3 degrees of freedom and the number
of movements that the subjects can perform is therefore
limited (usually opening and closing of the prosthesis). The
number of movements can be increased using specific control
sequences but in these cases the movements are far from
being natural and easy to be reproduced. Second, the control
systems are not “natural”, which means that the movement
that the amputee would be doing with the intact hand is
different from the movement performed by the prosthesis.
Third, the prostheses require long and complicated training
procedures. These facts contribute to the scarce diffusion
of sEMG prostheses [2]. In the scientific literature, several
control schemes based on classifiers have been proposed to
solve these control problems [3]. However, these results are
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still far from the possibility of being applied in practice as
any misclassification can have a negative effect.

The Non-Invasive Adaptive Prosthetics (Ninapro)
project [4] has the aim to help the scientific progress in
the field of sEMG movement recognition with a publicly
available benchmark database 1 to develop, test and compare
machine learning algorithms.

In this paper we describe the results obtained from the
classification of data of three hand amputated subjects ac-
quired within the Ninapro project and we compare the results
with the Ninapro database of 40 intact subjects. Finally we
find for each subject a selection of up to 9 highly independent
movements that can be discriminated with high accuracy.

The application of these results to the prosthetics industry
could allow the subjects to naturally control a dexterous
robotic hand and can lead to strong improvements to their
everyday life.

II. METHODS

A. Data Acquisition

The datasets of the amputated subjects were acquired
from three subjects with a transradial amputation of the
right forearm proximal to the hand. All the amputations are
transradial medium and long below elbow, with a remaining
percentage of 90%. The subjects are all males, with clinical
characteristics described in Table I. The first subject never
used a sEMG prosthesis, while the second and the third
subject have been using it respectively for 14 and 5 years.
The datasets of the amputated subjects are compared with
the datasets from 40 healthy controls (28 males, 12 females;
34 right-handed, 6 left–handed; average age 29.9 years with
standard deviation 3.9 years). The number of subjects can
seem small at first sight, but (as described in Section I) it
is not considering the literature of the field, which has to
face the difficulty of recruiting trans-radial hand amputated
subjects. Moreover, it must be noticed that the selection
of subjects with homogeneous type of amputation (90%
of forearm remaining in all the subjects) causes a further
reduction in the number of the possible candidates.

The sEMG data were acquired according to the final
version of the Ninapro acquisition protocol introduced in [4],
[5], [6]. The muscular activity is gathered using 12 active
double–differential wireless electrodes from a Delsys Trigno
Wireless EMG system, positioned as shown in Figure 1. The
protocol includes 6 repetitions of 50 movements represented
in Figure 2 and described in detail in [5], [6]. During the
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TABLE I
CLINICAL DATA OF HAND AMPUTATED SUBJECTS.

Years Remaining
Subject Age Missing from Forearm Handedness

Hand Amputation Percentage

1 67 Left 1 90 Left
2 44 Right 14 90 Right
3 55 Right 5 90 Right

(a) (b)

Fig. 1. Forearm of two of the transradial amputated subjects: (a) subject
2; (b) subject 3.

acquisition, the amputated subjects were asked to think to
repeat the movements shown on the screen of a laptop
according to a bilateral imitation procedure [7], while the
intact subjects were asked to repeat the movements with the
right hand. Each movement repetition lasted 5 seconds and
was followed by 3 seconds of rest.

B. Data Analysis

1) Feature Extraction and Classification: We applied a
classification procedure based on [6], [8] consisting of pre-
processing, windowing (at 400 ms), feature extraction and
classification. Four movement repetitions (1, 3, 4, 6) were
used to generate the training features, while the remaining
two (2, 5) were used to create the test set. We considered
four features and four classification methods, selected upon
popularity, previous application to sEMG and to ensure a
diversity in approaches. The selected features (Table II)
have previously been applied successfully to myoelectric
signals [9], [6], [10]. Each feature x̂ is computed from
signal x of length T and subindexed by t. In Histogram
(HIST) [11], B denotes number of HIST bins, and is equal
to 20 along a 3σ threshold. For marginal Discrete Wavelet
Transform (mDWT), we use ψl,τ to denote the mother
wavelet with translation l and dilation τ , while the total
number of considered translations is referred to as L. In this
case we used a db7 wavelet and 3 levels [12].

The four well-known classifiers considered have all been
used previously in the related literature. Linear Discriminant
Analysis (LDA) [13] has been used extensively for myoelec-
tric control [8] and is representative of classic pattern recog-
nition approaches. Least Squares Support Vector Machine
(LSSVM), is the least squares version for support vector
machine Support Vector Machine (SVM) classifiers [14], and
incorporate kernel machinery and regularization to address
non-linearity, noise, and the curse of dimensionality. In this
case it was applied with a Radial Basis Function (RBF)

TABLE II
DEFINITION OF THE USED FEATURE TYPES.

Feature Definition (per channel)

Root Mean Square (RMS) x̂ =

√
1
T

∑T

t=1
x2
t

Waveform Length (WL) x̂ =
∑T−1

t=1
|xt − xt+1|

Histogram (HIST) x̂1:B = hist (x1:t, B)

marginal Discrete Wavelet
Transform (mDWT)

x̂l =
∑T/2l−1

τ=0

∣∣∑T

t=1
xtψl,τ (t)

∣∣
ψl,τ (t) = 2−

m
2 ψ(2−lt− τ)

kernel. Random forests [15] are a combination of tree
predictors which showed excellent performances on sEMG in
terms of both accuracy and speed [16]. k-Nearest Neighbors
(k-NN) is a non-parametric technique that classifies samples
based on a majority vote among the k closest training
samples [13]. In this case, we select the number of neighbors
k ∈ {1, 3, 4, 5, 6, 7, 9, 11, 15}.

2) Highly Independent Movements: The last step of the
analysis consists in the computation of the maximum number
of highly independent movements. We define as highly
independent movements a subset of movements that can be
classified with an accuracy of above 90%. In this way, we
reduce the complexity of the task but also show that for fewer
movements a very high classification accuracy is possible
without training the subject to perform them [17]. Moreover
we also get an intuitive idea of the possible practical con-
sequences that the described analysis could have if it was
applied to the control of robotic hand prostheses. First, a
one-way Multivariate Analysis of Variance (MANOVA) was
performed (on the training set of each subject) for comparing
the multivariate means of the movements with Mahalanobis
distances. Second, a hierarchical cluster tree was created,
considering the further distance between clusters (Figure 2).
Third, subsets with increasing number of movements from
different leaf nodes of the cluster tree were created. Fourth,
each subset was classified as described in Section II-B.1. In
this phase we only used the Random Forests and the k-NN
algorithm with Root Mean Square (RMS) and Waveform
Length (WL) features because these combinations showed
the best balance between accuracy and computational effi-
ciency. Last, we select the largest subset of movements with
accuracy greater than 90%.

III. RESULTS

The average classification results for intact and hand am-
putated subjects (balanced by movement repetitions number)
are shown in Figure 3. For amputated subjects, the highest
average classification accuracy is 51.60%, which is obtained
with Random Forests and HIST features. For intact subjects,
the highest average classification accuracy is 69.16%, which
is obtained with LSSVM and, again, HIST features. In any
case, Random Forests and LSSVM performed very similarly
for both groups with all the features. Instead, LDA and k-NN
seem more sensitive to the feature choice. In particular, LDA
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Fig. 2. Example of movement clustering dendrogram used to perform the selection of highly independent movements. Each movement number tick
corresponds to the beginning of its picture below it.

shows the lowest average accuracy, while k-NN is often
comparable to LSSVM and Random Forests for most of the
features except mDWT. The highest classification accuracy
for amputated subjects is 58.68%, which is obtained for
subject 2 with Random Forests and HIST features.
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Fig. 3. Average classification results for intact and amputated subjects with
standard deviations for the considered classifiers. The results are balanced
by movement repetitions number.

Finally, in Figure 4 the average number of highly inde-
pendent movements is presented with standard deviations

for intact and amputated subjects. The average number of
independent movements for amputated subjects is approxi-
mately 4.58, i.e. 6 movements less than the intact subjects.
The highest number of highly independent movements for
amputated subjects is 9, which is obtained for subject 2
with both Random Forests and k-NN with WL feature. The
number of movements decreases to 7 with both classifiers
considering RMS.

Fig. 4. Average number of highly independent movements with standard
deviations for intact and amputated subjects.

IV. CONCLUSION
The sEMG movement classification results that we present

in this paper enhance the high control capabilities of dex-
terous robotic hands by hand amputated subjects. Currently,
myoelectric prostheses allow hand amputated subjects to per-
form a few movements. However, the control possibilities are
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still limited and not natural. The publicly available Ninapro
database has been developed in order to overcome this
limit through the evaluation of machine learning algorithms
from the worldwide scientific community on a common
database. We analyzed the Ninapro sEMG data of three hand
amputated subjects with a transradial amputation proximal to
the hand and we compare the results to 40 intact subjects.

First, we analyzed the datasets with an average classifica-
tion perspective per subject. It can be seen in Figure 3 that
the highest average balanced classification accuracy for the
amputated subjects is 51.60%. This result is more than 25
times the chance level for 50 movements (i.e. 2%) and 20%
less than the result obtained for the 40 intact subjects. It has
to be noticed that the ratio between the accuracy and the
chance level is much higher in this case than in previous re-
sults described in the literature for similar tasks, e.g. 8.5 (10
movements, accuracy 84.4%, [18]), 10.56 (12 movements,
accuracy 87.8%, [19]). It must be noticed that often the
results described in the literature are not balanced among the
number of repetitions of each movement. Therefore, they can
be strongly influenced by the high number of rest repetitions
(which are easier to be classified). Moreover other factors can
influence the classification accuracy in different amputated
subjects. However, in this specific case these factors do not
involve the presence of intrinsic hand muscles (which are not
recorded due to anatomical and acquisition setup reasons).

Finally, the highly independent movement selection (Fig-
ure 4) highlights the concrete possibility for amputated
subjects to control a robotic prosthetic hand with up to
9 different movements with low error. The natural control
of so many movements for daily activities could strongly
improve the quality of life of hand amputated subjects. It
has to be noted that different subsets of movements could
also be selected on the basis of other parameters such as the
functional usefulness of the movements. This step is deeply
innovative in literature, and future studies will be aimed
to delineate the subsets of movements that are particularly
useful for amputated subjects.

In conclusion, the results show an important step towards
the natural control of dexterous prosthetic hands in real life
and they strongly enhance immediate development possibil-
ities in this field.
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