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Abstract— Derived from the pioneer ionic Hodgkin-Huxley
model and due to its simplicity and richness from a point view
of nonlinear dynamics, the FitzHugh-Nagumo model (FHN)
is one of the most successful simplified neuron / cardiac cell
model. There exist many variations of the original FHN model.
Though these FHN type models help to enrich the dynamics
of the FHN model, the parameters used in these models
are often in biased conditions. The related results would be
questionable. So, in this study, the aim is to find the parameter
thresholds for one of the commonly used FHN model in order
to provide a better simulation environment. The results showed
at first that inappropriate time step and integration tolerance
in numerical solution of FHN model can give some biased
results which would make some publications questionable. Then
the thresholds of parameters α, γ and ε are presented. α
controls the global dynamics of FHN. α > 0, the cell is in
refractory mode; α < 0, the cell is excitable. ε controls the main
morphology of the action potential generated and has a relation
with the period (P = 3.065 × εα,γ

−0.8275 + 4.397). To show
oscillations of relaxation with FHN, ε should be smaller than
0.0085. γ influences barely action potential, it showed linear
relationship with the period and duration of action potential.
Even though α ≤ 0.1, ε < 0.0085, there is no definite threshold
for γ, smaller values are recommended.

I. INTRODUCTION

FitzHugh-Nagumo (FHN) model [1], [2] has been since
long time one of the basic models to study the cardiac
/ neuron dynamics, due to its simplicity (2 variables, 3
parameters) and relation to ionic models. It is also the second
most cited cardiac / neuron model. The original model
respects basically the conditions derived from the Hodgkin-
Huxley model [4]. So, it can be considered as physiologically
correct in certain conditions. However, there is nowadays
important parameters’ diversity in studies with FHN model,
which are often considered them as the default / original
ones. Unfortunately, this is not always true.

History became legend. Legend became myth. It has been
more than 60 years since the publication of FHN model.
Today’s FHN model is rather than generalized, somehow
lost the original conditions of its parameters. The derived
models would help to understand FHN model from different
aspects. But they act indeed differently. The obtained result
could be sometime questionable and even misleading, when
inappropriate conditions are applied.

So the aim of this study is to find the parameter thresholds
for one of the commonly used FHN model. We track back
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to the origin of the FHN model in Section II. In Section III,
we present at first that a problem from numerical solution of
FHN model can indeed give some biased results which would
make some publications questionable. Different parameter
threshold and their relationship with the period of action
potential are then presented.

II. MODELS

A. A little history of FitzHugh-Nagumo model
1928, Van der Pol model: The first model to representing

the heart’s dynamics is the Van der Pol model (BVP) [3]. In
1928, Van der Pol proposed a heartbeat equation based on
the concept “relaxation-oscillations” system :

v̈ − α
(
1− v2

)
v̇ + ω2v = 0, (1)

where α determines the main dynamics : smaller α makes
the system output be more-likely sinusoidal; larger values
of α can produce oscillations of relaxation. This equation
is then commonly studied as v̈ − α

(
1− v2

)
v̇ + v = 0 by

setting ω = 1.
1952, Hodgkin-Huxley model: In 1952, Hodgkin and

Huxley presented in their pioneer work a four-dimensional
model (V,m, h, n) of ionic mechanisms underlying current
conduction and excitation of action potential (AP) in nerve
[4] (HH), which opened a door to a new era of electro-
physiological studies. Even though it considers only sodium
activation m, sodium inactivation h and potassium activation
n, its “gating concept” has become the framework of electro-
physiological models. They received the 1963 Nobel Prize
in Physiology or Medicine for this work. It is today the most
cited physiological model (14695 times, data from Google
Scholar on March 16, 2014).

1961, FitzHugh model: In a series of studies of 1950’s,
FitzHugh found that BVP model can serves as a simple
representative of a class of excitable-oscillatory systems
including the HH model. In 1961, using BVP model and the
Lienard transformation y = ẋ/c+x3/3−x [5], he proposed
a two-dimensional model [1] of the electrical activities of
nerve membrane (x corresponding to v in Eq. (1)) :

ẋ = c
(
y + x− x3/3 + z

)
, ẏ = − (x− a+ by) , (2)

where 1− 2b/3 < a < 1, 0 < b < 1, b < c2.
1962, Nagumo’s electrical circuit and Nagumo’s equation:

In 1962, Nagumo et al. confirmed this model (Eq. (2)) with
experimental evidence from an electrical circuit model [2].
In this work, they proposed also a mathematical models of
the nerve axon (z : normalized potential) :

∂3z

∂t∂x2
=
∂2z

∂t2
+ µ(1− z + εz2)

∂z

∂t
+ z, (3)
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where µ > 0, 3
16 > ε > 0. In fact, this transmission line

simulator of nerve axon can be found in another work of
theirs in 1961 [6], same time as FitzHugh’s work. Later
in 1965, Nagumo et al. [7] proposed a more general active
transmission equation in neuron :

∂2u

∂x2
=
∂u

∂t
+ (u+ 1)(u−m)(u− 1), (4)

where 0 > m > −1. It is known as Nagumo’s equation. Due
to their equal contribution, the Eq. (2) is thereby named as
FitzHugh-Nagumo model (FHN).

B. Today’s FitzHugh-Nagumo model

The success of FHN model is not only due to its mathe-
matical simplicity and its richness from a point of view of
system dynamics, but also because of its correlation to HH
model. In fact, the four-dimensional HH model could divided
into two subsystems: (V,m) corresponds to v in FHN, fast
dynamics representing excitability; (h, n) corresponds to w,
slow dynamics representing accommodation and refractori-
ness. In consequence, the result obtained with FHN model
can be qualitatively interpreted as other ionic models. For
these reasons, FHN model becomes thus one of the most
studied models in analytical neuroscience / electrocardiology.

Many variations of FitzHugh-Nagumo model have been
derived from the original one. One of the most used is :

v̇ = v(v − α)(1− v)− w, ẇ = ε(v − γw), (5)

where α is considered playing a dominant role in the fast
dynamics (sodium currant) of the FHN model. The condition
of α is commonly chosen as α > 0 (either 0 < α < 0.5
or 0 < α < 1) to keep its qualitative electro-physiological
meaning. However it is in contradiction to the one in
Nagumo’s equation.

C. So, what is the real condition for α ?

Eq. (5) is in fact a variation of the combination of
FitzHugh’s model (Eq. (2)) and Nagumo’s equation (Eq. (4)).
This model takes advantages of both models : global dy-
namics from FitzHugh’s model and more generalized cubic
function from Nagumo’s equation. The cubic functions from
Eq. (2) and Eq. (5) can be represented respectively :

f(x) = x− x3

3
= −x

3

(
x+
√

3
)(

x−
√

3
)
, (6a)

f(v) = v(v − α)(1− v) = −v (v − α) (v − 1) . (6b)

Eq. (6) implies in a intuitive way that, to ensure that the
model could produce electrical wave pulse (in other wards,
excitable), α in Eq. (5) should be negative. However, this
does not mean that positive α is wrong. In fact, α > 0 in
Eq. (5) means that the cell simulated with FHN model is in
refractory mode. In this period, external stimulation cannot
provoke action potential.

III. RESULTS

A. Integration tolerance and time step

Many studies showed that FHN model can be used to
study chaotic phenomena in neuron system. However, they
are mostly based on discrete Euler method. As a first-order
method, the local error of Euler method is proportional to
the square of the step size. Its global error is proportional to
the step size. To obtain relatively reliable results with Euler
method for nonlinear stiff ODE systems like FHN, very small
integration step size is only the basic condition. Even this
condition is satisfied, the stability cannot be fully guaranteed.
For these reasons, Euler method is not recommended for
practical use [8].

Fig. 1. Different v due to numerical integration tolerance error, fourth-order
Runge-Kutta method. Upper figure with RelTol: 1e-3 and AbsTol: 1e-6;
lower figure with RelTol: 1e-7 and AbsTol: 1e-10. Parameters : α = 0.008
(upper figure), α = −0.008 (lower figure), γ = 0.008, ε = 0.01; initial
conditions : vini = 0.1, wini = 0; adaptive time step.

Taking the same parameters and initial conditions, the first
simulation is performed with larger tolerance (RelTol: 1e-3
and AbsTol: 1e-6), we obtained a arrhythmia-type v (Fig. 1,
upper) which is misleading. Since the true result should
be regular (Fig. 1, lower. smaller tolerance : RelTol: 1e-7
and AbsTol: 1e-10). It showed that if the stability condition
is not satisfied, small numerical integration tolerance could
“distort” the final results (even with high order integration
methods). Especially in case of reaction-diffusion equations,
the false new result could serve as stimulation to the system.
If this stimulation happened in excitable mode, an action
potential can be provoked. Since the new stimulations are not
constant; the amplitude of newly provoked action potentials
would be therefore irregular. In this way, a cardiac arrhyth-
mia with FHN model can be generated. This phenomenon
is in fact a course of different stimulation to the cell,
instead of one real cardiac arrhythmia. The results are thus
questionable. In consequence, all other simulations presented
in this study are performed with smaller error tolerance.

B. α > 0 vs α < 0

If α = 0, the cubic function in Eq. (5) will be f(v) =
v2(1 − v). This is a special case of FHN model and lost
the generality of the model. So, only α 6= 0 is studied. Two
cases are considered : single cell and tissue (cells grid).
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Single cell: All other parameters in this section are the
same except for α. As shown in Fig. 2, when α > 0, since the
membrane is in refractory period, external stimulation (initial
condition serves as a single stimulation) cannot induce an AP
in the membrane. So the potential v decreases exponentially
to resting state. However, if α < 0, the membrane is in

Fig. 2. Comparaison of α = 0.1 (upper) and α = −0.1 (lower) in FHN
model (Eq. (5)). Parameters : γ = 0.008, ε = 0.01; initial conditions :
vini = 0.1, wini = 0; adaptive time step.

excitable period. Even a small initial stimulation (vini = 0.1)
can provoke a pulse train with full amplitude.

Tissue: two-dimensional cells grid. Eq. (5) becomes in
this case :

v̇ = D∆v + v(v − α)(1− v)− w, ẇ = ε(v − γw),

where D is the diffusion parameter and ∆ is the Laplace
operator (4 points scheme in this study). The following
simulations are based on isotropic cells grid 200 × 200,
Dx = Dy = 0.1. The parameters are respectively: α = 0.1
(α = −0.1), γ = 1e− 4 and ε = 0.005.

One of the common illustrations of FHN model is to
simulate the plane wave propagation. As shown in Fig. 3, if
the tissue is initiated with border non-null condition. Plane
wave can be provoked. α < 0 in excitable mode. When

Fig. 3. α = 0.1 (upper) and α = −0.1 (lower), border initiation :
vini(1, 1 : 200) = 1, zeros for other cells; wini(1 : 200, 1 : 200) = 0.

α > 0, only one plane wave is generated; if α < 0, this
initial condition became a wave source. These two results
implied same conclusion as in Fig. 2 : α > 0 in refractory
period.

However, the reason of the plane wave generation in last
figure when α > 0 is that border initiation is a special case of
two-dimensional simulation. It is in fact due to the boundary

Fig. 4. α = 0.1 (upper) and α = −0.1 (lower), center initiation :
vini(100, 100) = 1, zeros for other cells; wini(1 : 200, 1 : 200) = 0.

condition of discrete ∆. Applying a center initiation to the
tissue (Fig. 4), α > 0 cannot indeed provoke a wave as in
Fig. 3. For negative α, multiple circular waves are generated,
which confirmed once more previous conclusion. To generate
wave in case of α > 0, continuous stimulation is needed:

v̇ = D∆v + v(v − α)(1− v)− w + Istim

As shown in Fig. 5, a single circular wave is provoked in
the tissue. The tissue is nevertheless in a refractory period.
For these reasons, no other waves are generated.

Fig. 5. α = −0.1 (upper) : center stimulation, Istim(100, 100) = 1

This result is also important in clinical applications,
for example the defibrillation by sub-threshold stimulation.
To terminate fibrillation using multiple sites simulation of
small amplitude, it is necessary to reduce firstly tissue’s
excitability, otherwise the defibrillation cannot be achieved
[9]. Results in this section confirmed that if the tissue is in
excitable mode (α < 0), external stimulation will become an
ectopic focus. In realistic situation, collision of new waves
will generate spiral wave which makes the defibrillation be
unsuccessful or even worse.

C. Parameters’ thresholds

In this section, the aim is to determine the influence of
the three parameters α, γ and ε on the action potential’s
cycle length (period) and duration APD90 (Action Potential
Duration at 90%). So some reasonable thresholds could be
obtained. After the preliminary study, the final testing ranges
for γ and ε are 0.001 : 0.0025 : 0.25, α is in −0.25 : 0.0025 :
−0.001. In total, 106 simulations have been performed.

4336



As shown in Fig. 6, ε influences dramatically the period
of AP. Since ε controls the recovery current in FHN model,
so larger ε means larger w, so v will thus be reduced. In

Fig. 6. Parameters’ influence on period of AP in FHN. Red curve in first
sub-figure is the fitted curve : Period = 3.065 × εα,γ−0.8275 + 4.397.
(discontinuity in third sub-figure means no valid AP generated.)

fact, ε has a power function relationship with period P :

P = 3.065× εα,γ−0.8275 + 4.397, (7)
which is shown in the first sub-figure of Fig. 6. Fixing ε
and α, γ is linear to the period. This relationship reflects
the property of first order of w from Eq. (5). As discussed
previously, α should be negative in order to produce an AP
train. However, this is just one of the conditions. Even α < 0,
FHN cannot always produce valid action potential (3rd sub-
figure in Fig. 6). It depends also on ε and γ. When α >
−0.1, there exists a region where no valid AP is provoked.
If α < −0.1, α and period of AP have practically a linear
relationship.

Fig. 7. Ratio of Period/Duration. Red line is the ratio threshold at 0.33

The relationships between the duration of AP and these
three parameters are almost the same as those for period.
To determine their thresholds, we introduce the ratio RDP

between the AP period and its duration (Fig. 7). We found if
RDP > 0.33, only sinusoidal signal are observed. In this
case, the FHN lost its essential oscillations of relaxation
property that it is designed for. To respect this property, it
should be RDP ≤ 0.33. In consequence, the strict condition
for ε should be ε ≤ 0.0085 to generate oscillations of
relaxation. Under this condition of ε, then α and γ can
be chosen properly. It is advisable to avoid the interval
−0.1 < α < 0 due to the constraint shown in Fig. 6.
As for γ, no absolute threshold exists. So small values are
recommended, as conventionally did.

IV. CONCLUSION

In this article, we studied the parameters ε, γ and α in
FitzHugh-Nagumo model. It is clear now that α controls
the global dynamics of FHN. α > 0, the cell is in refractory
mode and does not respond to external stimulation; if α < 0,
the cell is excitable. ε controls the main morphology of the
action potential generated and has a relation with the period
(P = 3.065 × εα,γ−0.8275 + 4.397). When ε > 0.0085, the
obtained curves are more likely to be sinusoidal. To show
oscillations of relaxation with FHN, ε should be smaller than
0.0085. γ influences barely AP, it showed linear relationship
with the period and duration of AP. When α ≤ 0.1 and
ε < 0.0085, γ can be freely chosen for excitable cell, but
smaller values are recommended. Another issue in numerical
studies of FHN model is the error tolerance and the order
of integration method. It is better to avoid using low order
integration methods; otherwise, the integration stability error
would alter the results and lead to questionable conclusion.
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