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Abstract— This paper is focused on quantitative perfusion
analysis using MRI and ultrasound. In both MRI and ul-
trasound, most approaches allow estimation of rate constants
(Ktrans, kep for MRI) and indices (AUC, TTP) that are only
related to the physiological perfusion parameters of a tissue
(e.g. blood flow, vessel permeability) but do not allow their
absolute quantification. Recent methods for quantification of
these physiological perfusion parameters are shortly reviewed.
The main problem of these methods is estimation of the arterial
input function (AIF). This paper summarizes and extends the
current blind-deconvolution approaches to AIF estimation. The
feasibility of these methods is shown on a small preclinical study
using both MRI and ultrasound.

[. INTRODUCTION

Perfusion imaging is an important diagnostic tool used
mostly in oncology, neurology and cardiology, to assess
the perfusion status of the tissue on a capillary level, e.g.
assessment of angiogenesis, ischemic regions and inflam-
mation. This work is focused on clinical and preclinical
dynamic contrast-enhanced magnetic resonance and ultra-
sound imaging (DCE-MRI and DCE-US). In these methods,
contrast-agent concentration time curves are derived from
the acquired image sequences for each tissue region of
interest (ROI, e.g. the whole tumor or each pixel/voxel). In
quantitative DCE-MRI, these tissue curves are approximated
by a pharmacokinetic model. The ultimate goal is to estimate
the physiological perfusion parameters, such as blood flow,
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Fy, blood volume, vy, vessel permeability-surface product,
PS, and extravascular-extracellular space volume, v..

In DCE-MRI, the usual pharmacokinetic models are the
Tofts and extended Tofts models [1]. The estimated perfu-
sion parameters included in these models are the forward
transfer constant between blood plasma and the extravascu-
lar extracellular (interstitial) space, K trans the efflux rate
constant from the extravascular extracellular space to blood,
kep and ve (and also v, for extended Tofts model). To
estimate the complete perfusion-parameter set, including £},
and PS, advanced pharmacokinetic models [1] need to be
applied, such as the adiabatic approximation to the tissue ho-
mogeneity model (ATH), the distributed-capillary adiabatic
tissue homogeneity model (DCATH) or the two-compartment
exchange model (2CXM). However, the parameter estimation
of these advanced pharmacokinetic models requires a high
signal-to-noise ratio (SNR) in order not to be ill-conditioned.
Furthermore, application of these models assumes a high
temporal resolution of the acquisition to capture the vascular-
distribution phase of the bolus. These are the main reasons
why most quantitative DCE-MRI studies are based on the
Tofts or extended Tofts models. This is especially the case
for preclinical DCE-MRI, where, to our knowledge, the only
use of such models have been [2], [3].

The pharmacokinetic models of quantitative DCE-MRI in-
clude the arterial input function (AIF). It is the contrast-agent
concentration curve in the arterial input of the tissue ROIL. It
is one of the major factors causing poor reproducibility of
DCE-MRI. There are several approaches to determination
of the AIF. The first approach is to derive it from the
acquired image sequence as the contrast-agent concentration
curve in a large artery [4]. However, such measurement is
distorted by flow artifacts, partial volume effect, saturation
and T2* effect. The second approach is to use a population-
based AIF [5]. This ignores the differences in the vascular
tree between different subjects and depends on the AIF
acquisition methods used for creation of these population-
based “’standards”. The third (preclinical) approach is based
on analysis of arterial blood samples taken during the bolus
application [6] which is a fairly invasive method and suffers
from the AIF-shape dispersion (blood samples are taken
far from the arterial input of the tissue ROI). The fourth
approach is based on a reference tissue (e.g. muscle) [7].
The AIF is estimated from the tissue curve in this reference
tissue and the presumably known perfusion parameters. This
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approach has been shown for the Tofts model. For the ad-
vanced pharmacokinetic model, the complete set of perfusion
parameters would have to be known which is not very
realistic. Another approach to estimation of the AIF is based
on blind deconvolution. Imposing prior knowledge (e.g.
the pharmacokinetic model, positivity of the contrast-agent
concentration curves, model of the AIF) and a suitable initial
estimation scheme, it is possible to estimate simultaneously
the perfusion parameters and the AIF from the measured
tissue ROI contrast-agent concentration curves. This allows
estimation a unique AIF for each DCE-MRI acquisition. This
approach has been introduced in clinical DCE-MRI as multi-
channel deconvolution (multiple tissue ROI signals processed
simultanously) in [8], [9] for the Tofts model and extended
to an advanced pharmacokinetic model (ATH) and to the
preclinical application group [2], [3].

In DCE-US, quantitative perfusion analysis using a similar
concept of pharmacokinetic modeling including the AIF
has been introduced recently in [10], [11]. The AIF is
measured in a big artery feeding the analyzed tissue. The
pharmacokinetic model is simplified by the intravascular
character of ultrasound contrast agents. It allows estimation
of vy and Fj. However, measurement of the AIF in a blood
pool is difficult due to contrast-agent-related attenuation,
blood-velocity dependence of the backscattered signal and
low spatial resolution of ultrasound images. To avoid this,
we have recently proposed a blind-deconvolution approach
called bolus & burst [12], [13]. It is based on the following
acquisition protocol. Following a contrast-agent bolus ap-
plication, low-energy imaging pulses are used to record the
”bolus-phase” sequence. In the later wash-out phase of the
bolus, when the tracer concentration decays rather slowly, a
burst pulse sequence is applied to destroy the contrast agent
in the imaging plane. The following “replenishment phase” is
recorded using low-energy imaging pulses. The assumption
of slow decay of the AIF and of zero initial contrast-agent
concentration in this replenishment phase are important prior
information for blind deconvolution.

This paper presents new extensions to the blind-
deconvolution methods of AIF estimation and shows their
feasibility on a small preclinical study (group of 4 mice,
subcutaneous tumor) for both DCE-MRI and DCE-US. In the
DCE-MRI part, our previous blind-deconvolution AIF esti-
mation method [2], [3], based on the ATH pharmacokinetic
model and a nonparametric AIF, is extended to a model-
based AIF. A new AIF model for preclinical DCE-MRI is
introduced. In the DCE-US part, our blind-deconvolution
AIF estimation method bolus & burst [12], [13] is extended
from clinical to preclinical application by using the same
new AIF model as in the MRI part. Another extension of
the DCE-US algorithm is generation of perfusion-parameter
maps instead of estimation of perfusion-parameters for single
large ROIs.

II. BLIND DECONVOLUTION IN DCE-MRI

The tissue contrast-agent concentration time curve is mod-
eled using a pharmacokinetic model as a convolution of the

AIF and the tissue residue function (TRF), multiplied by
blood flow. The TRF is modeled using the ATH model [1].
For AIF, the standard model is a bi-exponential function [14].
While it is probably sufficient for the Tofts and extended
Tofts pharmacokinetic models, it is not suitable for advanced
pharmacokinetic models, such as the ATH. The need for
finer time-domain sampling and more perfusion parameters
included in these advanced models require a more flexible
AIF model. The new AIF model is a sum of three gamma
variate functions:

3
ATF(t) =) " ane™ ™, (1)

n=1

where ¢ is time, /3, o, and 7,, are model parameters. Approx-
imation of the contrast-agent concentration time curves by
the pharmacokinetic model is formulated as a minimization
problem. The criterion function is a sum of the least-squares
differences between the contrast-agent concentration time
curve and its convolutional model for all channels. The
channels represent the tissue regions from which the contrast-
agent concentration time curves are extracted (10 channels
are used here). Hence, the blind-deconvolution algorithm
results in estimates of the TRF parameters (perfusion param-
eters) of each channel and of the AIF parameters (common
for all channels). An alternating optimization scheme is
applied where each iteration (10 iterations are used here)
consists of two steps: 1. update of the TRF while the AIF is
fixed to the actual estimate, 2. update of the AIF while the
TREF is fixed to the actual estimate. The substeps are realized
using the Active-Set optimization algorithm as implemented
in the Matlab™ Optimization toolbox (MathWorks, USA),
function fmincon.

The resulting AIF estimate is scaled so that perfusion anal-
ysis of the contrast-agent concentration curve of a reference
tissue (here spinal muscle) results in a known literature-based
value of v, + v, (here 0.13 ml/g tissue). The sum v, + v,
corresponds to the area under the curve of the TRF [2]. The
estimated AIF is then subsequently used in the pixel-by-
pixel non-blind deconvolution of the whole image sequence
to calculate the perfusion-parameter maps.

ITII. BLIND DECONVOLUTION IN DCE-US

The pharmacokinetic model used in DCE-US is the same
as for DCE-MRI, except for the TRF, which is an exponential
function with the time constant being F}, /vy [12]. The blind
deconvolution algorithm is formulated as minimization of
the least-mean-square difference between the measured and
modeled signals. One channel (i.e. signal from one ROI) is
used. The criterion function is a sum of the bolus and replen-
ishment terms. In the replenishment part, the application of
burst is modeled as zero initial condition at the time instant
of the replenishment-phase start. Scaling of the AIF estimate
is done with respect to a region of the highest area under the
curve. The AIF is scaled so that v, of this region is 1 ml/g,
assuming it represents an intravascular region. The estimated
AIF is then subsequently used in the region-by-region (each
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region is 20x20 pixels) non-blind deconvolution of the whole
image sequence to calculate the perfusion-parameter maps.

IV. EXPERIMENTAL DATA AND RESULTS
A. Experimental Data

a) Animals: The proposed AIF estimation method is
evaluated on preclinical data. The test recordings (approved
by the National Animal Research Authority) was done on
a BALB/c mouse with murine colon tumor cells CT26.WT
(ATCC, CRL-2638) subcutaneously implanted into the left
flank (1210° cells in HC Matrigel). Four mice were ex-
amined in the following way. Each mouse underwent three
DCE-MRI examinations, two with a standard low-molecular-
weight contrast agent (Magnevist, Bayer HealthCare Pharma-
ceuticals, Berlin, Germany) and one with a high-molecular-
weight contrast agent (GadoSpin P, Miltenyi Biotec, Ber-
gisch Gladbach, Germany). In addition, two of these mice
underwent a DCE-US examination (contrast agent: Vevo
MicroMarker, Visualsonics, Toronto, Canada).

b) MRI acquisition: One axial slice through the tumor
middle was imaged. The mice were anesthetized with Isoflu-
ran, Oz and monitored continuously for respiratory rate and
body temperature. A 9.4T BioSpin (Bruker Biospin MRI,
Ettlingen, Germany) scanner was used with the following
acquisition parameters: 2D FLASH sequence with TR/TE
14/2.5 ms, flip angle 25 deg., image matrix 128x96 pixels,
slice thickness 1 mm, sampling interval 1.05 s, acquisition
time 13 min. Before the bolus administration, 15 images
were recorded with TR = 14, 30, 50, 100, 250, 500 ms to
convert the dynamic image sequence to the contrast-agent
concentration. Anatomical images were recorded using the
RARE sequence (T2-weighted and T1-weighted pre- and
post-contrast).

c¢) US acquisition: A Vevo 2100 (Visualsonics,
Toronto, Canada) scanner was used with the MS250 probe,
nonlinear contrast imaging mode, acquisition time 2 min
40 s. To convert image intensity within the ROI to the
concentration of the contrast agent, standard preprocessing
is applied, including linearization of video data (conversion
to envelope data) and square operation, see e.g. [15].

B. Results

The resulting DCE-MRI perfusion-parameter maps were
spatially consistent and in the expected range. They showed
the expected characteristics according to assumed histologi-
cal composition. There was a clear distinction between the
tumor rim and the fibro-necrotic centre. On the P.S map the
permeability decreased towards the centre. The Fj map was
also with a good correlation with the expected malignant
lesion features and other parametric images (not shown), the
highest values on the outer lesion margin corresponded to
the presence of the feeding and draining vessels.

The box plots in Figs. 3 and 4 show the perfusion-
parameter estimates in manually drawn tumor ROIs. The
central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers. In line with theoretical

Fig. 1. Left: Example of T2-weighted anatomical image of the tumor,
mouse 1, examination 2.. Elllipse denotes the tumor cross-section. Upper
region is a cross-section of spine and spinal muscles. Right: Example of
B-mode ultrasound imageof tumor, mouse 1.
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Fig. 2. Examples of estimated DCE-MRI perfusion-parameter maps within
the tumor, mouse 1, examination 2.

expectations the estimates of Fj were independent of the
contrast agent’s molecular weight, while the estimates of P.S
showed lower values for the high-molecular-weight contrast
agent. Reproducibility of the perfusion-parameter estimates
(deduced from the comparison of the two Magnevist exam-
inations) was fairly good (except for P.S, mouse M04). In-
tersubject comparison indicates a fairly homogeneous animal
group, except for mouse M04 with a clearly more perfused
tumor giving consistently higher F}, and PS than for other
animals.

The perfusion-parameter maps from DCE-US (Fig. 5)
corresponded well with the DCE-MRI maps. Also the scale
of blood flow was the same (box plots in Figs. 5 and Fig. 3).

V. CONCLUSIONS

Estimation of AIF using blind deconvolution is feasi-
ble, as was shown for DCE-MRI on clinical [8], [9] and
preclinical data [2], [3]. The presented extension of blind-
deconvolution DCE-MRI introduces the combination of an
advanced pharmacokinetic model (ATH) and a new small-
animal AIF model. This allows robust estimation of F} and
PS in addition to the Tofts-model’s perfusion parameters.
To evaluate the DCE-MRI method we have proposed a new
way of indirect validation by using two contrast agents
of different molecular weight. The presented extension of
our DCE-US method towards pixel-wise perfusion analysis
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Fb[ml/min/g tissue]

and combination with the new AIF model seems to give
consistent results, when compared to DCE-MRI estimates
of Fy. A thorough validation will be needed to assess the
achievable accuracy and reproducibility of the methods.
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Fig. 5. Left: example of estimated DCE-US perfusion-parameter maps
within the tumor, mouse 1. Right: box plots of Fj, within the tumor region.

MOX denotes animal number.
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