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Abstract— Prostate cancer (PCa) diagnosis and treatment
is still limited due to the lack of reliable imaging meth-
ods for cancer localization. Based on the fundamental role
played by angiogenesis in cancer growth and development,
several dynamic contrast enhanced (DCE) imaging methods
have been developed to probe tumor angiogenic vasculature.
In DCE magnetic resonance imaging (MRI), pharmacokinetic
modeling allows estimating quantitative parameters related to
the physiology underlying tumor angiogenesis. In particular,
novel magnetic resonance dispersion imaging (MRDI) enables
quantitative assessment of the microvascular architecture and
leakage, by describing the intravascular dispersion kinetics
of an extravascular contrast agent with a dispersion model.
According to this model, the tissue contrast concentration at
each voxel is given by the convolution between the intravascular
concentration, described as a Brownian motion process accord-
ing to the convective-dispersion equation, with the interstitium
impulse response, represented by a mono-exponential decay,
and describing the contrast leakage in the extravascular space.
In this work, an improved formulation of the MRDI method is
obtained by providing an analytical solution for the convolution
integral present in the dispersion model. The performance of
the proposed method was evaluated by means of dedicated
simulations in terms of estimation accuracy, precision, and
computation time. Moreover, a preliminary clinical validation
was carried out in five patients with proven PCa. The proposed
method allows for a reduction by about 40% of computation
time without any significant change in estimation accuracy and
precision, and in the clinical performance.

I. INTRODUCTION

Angiogenesis plays a fundamental role in cancer growth
and the development of metastasis [1], [2]. In cancer, an-
giogenesis leads to the formation of a dense network of
tortuous and leaky microvessels in a poorly organized vas-
cular environment, exhibiting increased arteriovenous shunts
and chaotic flow patterns. Novel cancer therapies aimed
at inhibiting angiogenic processes and/or disrupting angio-
genic tumor vasculature are currently being developed and
tested [3]. Focal therapies for localized cancers are also
available [4], [5], but accurate cancer delineation is required
for their efficient use. The need for early evaluation and
monitoring of therapeutic response to angiogenic treatment,
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and for earlier and improved cancer localization, has led
to the development of several dynamic contrast-enhanced
(DCE) imaging methods for in-vivo non-invasive assessment
of tumor angiogenesis [6], [7], [8], [9], [10].

In DCE magnetic resonance imaging (MRI), the adopted
contrast agent leaks across the vascular endothelium into
the intersitium. Assessment of the contrast agent distribution
between the intravascular and extravascular spaces offers
the opportunity to investigate the functional and structural
changes in tumor vasculature. To this end, pharmacoki-
netic models are fitted to contrast concentration time curves
(CTCs) measured at each voxel by DCE-MRI, leading to the
estimation of quantitative parameters that are related to the
physiology underlying tumor angiogenesis [7], [10], [11].

Recently, magnetic resonance dispersion imaging (MRDI)
has been proposed as a new method to characterize the
changes in the tumor microvasculature, by assessing the
intravascular dispersion kinetics of an extravascular contrast
agent with a dispersion model [10], [12]. A preliminary val-
idation of this method for prostate cancer (PCa) localization
has shown promising results, encouraging further research.

The clinical relevance of PCa is confirmed by the most
recent statistics. It accounts for 27% of estimated new cancer
cases and 10% of estimated cancers deaths in males, in the
Unites States [13]. Current diagnosis of PCa still relies on
repeated systematic biopsies, hampering the efficient and
timely use of the available focal therapies [14], [15], and
evidencing a need for imaging methods enabling reliable PCa
localization.

MRDI can reveal the presence of cancer neo-angiogenesis
by generating parametric maps related to the microvascular
architecture (dispersion parameter, κ) and to the microvas-
cular permeability (leakage parameter, kep). Parameter es-
timation is obtained by fitting CTCs measured with DCE-
MRI by the proposed dispersion model. According to this
model, the tissue contrast concentration at each voxel is given
by the convolution between the intravascular concentration,
described as a Brownian motion process according to the
convective-dispersion equation, with the interstitium impulse
response, represented by a mono-exponential decay, and
describing the contrast leakage in the extravascular space.

Due to the non-linear nature of the model, parameter
estimation is performed by an iterative fitting routine which
minimizes an objective function given by the sum of squared
errors. The presence of the convolution integral increases the
computational burden of the fitting routine by introducing N2

multiplications at each iterative step, where N is the number
of time samples in the CTC.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 4272



Based on the promising results obtained by MRDI for
prostate cancer localization, in this work an improved formu-
lation of the dispersion model is proposed and tested in PCa.
The new formulation is obtained by providing a closed-form
solution of the convolution integral present in the dispersion
model. A closed-form solution is attractive because it may
improve the time performance of the parameter estimation
method by reducing the number of operations to be per-
formed at each step of the iterative fitting routine. Moreover,
the shape of the objective function is also changed, leading to
possible reduction in the estimation error. The performance
of the proposed solution is tested by dedicated simulations,
and compared in terms of estimation computation time,
accuracy, precision and robustness to noise. Moreover, a
preliminary clinical evaluation is carried out on five patients
with proven PCa.

II. THEORY

A. Extravascular contrast-agent dispersion modeling

The concentration of an extravascular contrast agent in
a voxel of tissue is given by the weighted sum of the
intravascular and the extravascular concentrations as

Ct(t) = vpCp(t)+ veCe(t), (1)

where Ct(t) is the tissue contrast concentration, Cp(t) and
Ce(t) are the plasma and extravascular concentrations, re-
spectively, and vp and ve are the plasma and extravascular
fractional volumes, respectively. The leakage of the contrast
agent from the intravascular space into the interstitium can
be described by the model of Tofts et al. [11] as a transport
process driven by the concentration gradient,

ve
∂Ce(t)

∂ t
= Ktrans(Cp(t)−Ce(t)), (2)

where Ktrans represents the volume transfer constant. As-
suming negligible contribution of the plasma compartment
(i.e. vp ≃ 0), and solving (2) with initial conditions Ce(0) =
Ct(0) = 0, the contrast concentration at each voxel for t ≥ 0
is described as

Ct(t) = KtransCp(t)∗ e−kept , (3)

where kep = Ktrans/ve is the back-flux rate from the ex-
travascular space into the blood plasma, and the symbol ∗
represents the convolution integral.

The contrast kinetic in the intravascular phase in a voxel
of tissue can be modeled as a Brownian motion process,
described by the convective-dispersion equation. A solution
of this equation is given by the modified local density random
walk model, which provides a local characterization of the
dispersion process as [9]

Cp(t − t0) = α
√

κ
2π(t − t0)

e
− κ(t−µ−t0)

2

2(t−t0) , (4)

where α is the time-integral of Cp(t), t0 is the theoretical
contrast injection time, µ is the mean transit time of the
contrast particles between injection and detection sites, and

κ is the intravascular dispersion parameter, given by the
local ratio between contrast convection (squared velocity v2)
and dispersion (dispersion coefficient D). In the presence of
convection through a microvascular network, dispersion is
mainly determined by the multipath trajectories across the
microvascular bed. For these reasons, the local dispersion
parameter has been adopted to characterize the microvascular
architecture [9].

By making the adiabatic approximation [16], which as-
sumes the kinetics of the intravascular dispersion to be
much faster than the extravascular leakage (i.e. κ ≫ kep),
the intravascular concentration Cp(t) in (3) can be substituted
by Cp(t) given in (4). The resulting dispersion model is thus
obtained as

Ct(t − t0) = A

(

√

κ
2π(t − t0)

e
− κ(t−µ−t0)

2

2(t−t0)

)

∗
(

e−kept
)

. (5)

with A = Ktransα .

B. Closed-form solution of the convolution integral

A closed-form solution of (5) is obtained as

Ct(t) =A

√

κ
8z

e−kep(t−t0)+κµ×

[e2
√

zϖ (er f (
√

zt +
√

ϖ/t)−1)+

e−2
√

zϖ (er f (
√

zt −
√

ϖ/t)+1)],

(6)

where er f represents the error function, z = 1
2 κ − kep,

ϖ = 1
2 κµ2 and the condition κ > 2kep, in accordance with

the adiabatic approximation, is assumed. A more detailed
derivation of (6) can be found in the appendix.

III. METHODS

A. Simulations

The performance of the novel method (Eq. (6)) were
compared with the original method (Eq. (5)) in terms of
estimation time, accuracy, precision and robustness to noise.
A simulated dataset of 1375 clean CTCs was obtained
by simulating the partial differential equation in (2) in a
finite-difference approach, with intravascular concentration
as in (4). The parameters were changed within the ranges
0.005÷4 s−1, for κ , and 0.005÷6 min−1, for kep, according
to the values found in literature [9], [17], and with additional
condition, due to the adiabatic approximation, of κ > 2kep.

The effect of noise was evaluated by adding to the sim-
ulated CTCs Gaussian noise with standard deviation σ =
CTCpeak/10SNR, with CTCpeak being the maximum of the
curve, and SNR the signal-to-noise ratio. The performances
were evaluated for SNR ranging from infinity to 15 dB, there-
fore covering the values commonly encountered in clinical
practice. For each value of the SNR, the normalized mean
absolute error (NMAE) and its standard deviation (σNMAE )
were calculated for each parameter (κ and kep), and taken as
a measure of estimation accuracy and precision, respectively.
Furthermore, the time performance of the two methods
was evaluated by calculating the average computation time
needed to fit one CTC.
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Parameter estimation was performed by combining a grid
search with an iterative loop, using the Trust-Region Re-
flective method [10]. All the analysis was implemented in
MATLAB R©(MathWorks Inc., Natick, MA) running on a
standard PC.

B. Clinical Evaluation

Five patients referred for radical prostatectomy underwent
a DCE-MRI exam at the Academic Medical Center (AMC),
University of Amsterdam (the Netherlands). All the included
patients signed informed consent. After intravenous injection
of 0.1 mmol/Kg bolus of Gadobutrol (Gadovist, Bayer),
imaging was performed with a 1.5 T MRI scanner (Magne-
tom Avanto, Siemens) equipped with a transrectal coil, and
using a spoiled gradient echo recall sequence with phase
oversampling. The sequence settings were TR/TE/flip angle
= 50 ms/3.9 ms/70 degrees, the voxel size was 1.67x1.67x4
mm3, and the time resolution was 3.1 s/volume (for 7 slices).
The number of frames acquired was 60 in 3 patients, and 80
in 2 patients.

The clinical validation of the proposed method was
performed by comparing the parametric images with the
histological analysis of resectioned prostate. The histology
specimens used for this study were obtained from patients
with proven PCa and analyzed at the AMC. Histological
analysis was performed on 4-mm slices, where cancerous
tissue was marked by a pathologist based on the microscopic
analysis of cell differentiation (Fig. 1e). In order to evaluate
the ability of the estimated parameters to diagnose cancer, the
marked regions were overlapped to the corresponding MRI
parametric maps (Fig. 1a-d). The classification performance
of the estimated parameters was evaluated on a voxel level
in a total of 29 MRI slices in terms of sensitivity, specificity,
and area under the receiving operator characteristic (ROC)
curve. Based on the ROC curves, the optimal classification
threshold for each parameter was chosen as the point closest
to the top-left corner, and sensitivity and specificity were
calculated accordingly.

IV. RESULTS

A. Simulations

Table I reports the results of the simulations in terms of
NMAE and its standard deviation σNMAE for different SNRs.
Regarding the time performance, the average computation
time needed to fit one CTC was 1.09 s and 0.61 s with the
original and novel method, respectively. Therefore, a reduc-
tion by 41% of the computation time was obtained with the
novel method. Moreover, to compare the estimation between
the two methods, the normalized mean absolute difference
of the parameter estimates and its standard deviation were
calculated for each simulated curve at all SNR values. These
were 1.08% ± 4.68% for κ , and 0.47% ± 1.21% for kep,
respectively.

B. Clinical Evaluation

The results of the clinical validation are reported in
Table II. Classification is evaluated at a voxel level in terms

TABLE I

NORMALIZED MEAN ABSOLUTE ERROR AND STANDARD DEVIATION

(NMAE ±σNMAE (%))

SNR (dB) κ (original) κ (novel) kep (original) kep (novel)
10000 0.62±3.48 0.43±2.09 0.33±1.15 0.26±0.56

35 1.28±5.20 1.13±4.61 0.36±1.06 0.29±0.55
30 1.46±5.60 1.13±4.22 0.44±1.20 0.34±0.55
25 2.12±7.55 1.76±5.80 0.53±1.22 0.46±0.74
20 2.81±8.69 2.48±7.16 0.85±1.54 0.76±1.08
15 3.64±10.87 3.03±8.48 1.35±2.04 1.17±1.52

of specificity, sensitivity, and ROC curve area. The average
computation time needed to fit one CTC was 1.53 s and 0.96
s for the original and novel method, respectively. Therefore,
a reduction of 37% of the computation time was obtained
with the novel method.

TABLE II

CLASSIFICATION RESULTS

κ (original) κ (novel) kep (original) kep (novel)
Sensitivity 85% 85% 71% 80%
Specificity 92% 91% 61% 56%
ROC area 0.92 0.92 0.68 0.72

V. DISCUSSION AND CONCLUSIONS

A novel formulation of the MRDI method for quantitative
assessment of tumor angiogenesis has been proposed and
tested in PCa. The new formulation has been obtained by
providing an analytical solution for the convolution integral
present in the dispersion model.

The convolution integral introduces at each iterative step of
the fitting routine N2 multiplications, where N is the number
of time samples in the CTC. Therefore, the asymptotic algo-
rithm complexity of the original MRDI method is O(N2). By
providing a closed-form solution for the convolution integral,
the novel MRDI method allows reducing the asymptotic
algorithm complexity to O(N), as can be observed in Fig. 1f.

As a result, a reduction by about 40% of the average
computation time has been achieved with the novel method,
without significant changes in the estimation precision and
accuracy, evaluated by dedicated simulations, and in the clin-
ical performance, evaluated in five patients. In fact, the simu-
lation results showed that the mean normalized difference in
the parameter estimates between the two methods was as low
as 1%. However, a difference in the classification results with
the leakage parameter kep can be observed (Table II). This is
probably due to the small number of patients included in the
study, suggesting that further validation in a larger dataset is
needed.

Although this preliminary validation was performed with
PCa, the proposed method can be extended to any form of
cancer in which angiogenesis plays an important role.

As new solutions are continuously being developed that
boost the spatiotemporal resolution of DCE-MRI loops,
the number of voxels and of time frames keep increasing,
rendering the proposed solution even more advantageous.
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Fig. 1. a-d. Parametric maps of κ and kep obtained with the original
(a,c) and novel (b,d) method; e. Histology specimen corresponding to the
parametric maps in a-d; f. Computation time dependency on the number of
samples for the original method (blue) and novel method (red).

APPENDIX

The derivation of (6) is here explained in more detail. By
expressing (5) as

Ct(t − t0) = A
∫ t+t0

t0

√

κ
2π(τ − t0)

e
− κ(τ−µ−t0)

2

2(τ−t0) e−kep(t−τ)dτ ,

(7)
and making the substitution τ − t0 = σ , equation (5) can be
rewritten as

Ct(t) = A

√

κ
2π

e−kep(t−t0)+κµ
∫ t

0

√

1
σ

e−(
1
2 κ−kep)σ− κµ2

2σ dσ .

(8)
Then, with the substitution σ = x2, equation (8) becomes

Ct(t) = 2A

√

κ
2π

e−kep(t−t0)+κµ
∫

√
t

0
e−(

1
2 κ−kep)x2− κµ2

2x2 dx.

(9)
The integral in (9) can be solved by using the known

integral in [18], given below

∫ x

0
e−a2x2− b2

x2 dx =

√
π

4a
[e2ab(er f (ax+b/x)−1)+

e−2ab(er f (ax−b/x)+1)].
(10)

In fact, by substituting z = 1
2 κ − kep and ϖ = 1

2 κµ2, the
integral in (9) can be written as

∫

√
t

0
e−(

1
2 κ−kep)x2− κµ2

2x2 dx =
∫

√
t

0
e−zx2− ϖ

x2 dx. (11)

Therefore, equation (11) can be solved using (10), leading
to the solution given in (6).
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