
  

 

Abstract—We first discuss several key technical issues 

associated with quantitative dynamic contrast enhanced 

magnetic resonance imaging (DCE-MRI), and then provide 

examples of DCE-MRI in oncology.  In particular, we examine 

the importance of both active and passive delivery of the 

contrast agent to the tissue under investigation, and 

repeatability/reproducibility in DCE-MRI studies.  We then 

discuss examples of how DCE-MRI can assist in assessing and 

predicting therapeutic response in the neoadjuvant setting. 

I. INTRODUCTION 

Dynamic contrast enhanced magnetic resonance imaging 
(DCE-MRI) involves the serial acquisition of T1-weighted 
images before, during, and after the injection of a 
paramagnetic contrast agent [1]. As the contrast agent arrives 
at a region of interest it changes the tissue’s native T1 as a 
function of the concentration and distribution of the contrast 
agent.  Thus, images acquired during this process lead to a 
signal intensity time course that can then be analyzed with a 
pharmacokinetic model to return estimates of parameters 
related to tissue physiology including K

trans
 (the volume 

transfer constant, related to perfusion/permeability), ve (the 
extravascular extracellular volume fraction), vp (the plasma 
fraction), and kep (the efflux constant).  These parameters are 
relevant when studying, for example, tumor induced 
angiogenesis.  In order to perform this modeling three 
fundamental entities are required: 1) a baseline map of the 
tissue’s native T1 value(s), 2) the time rate of change of the 
concentration of contrast agent in both a feeding artery (the 
so-called arterial or vascular input function) and the tissue of 
interest, and 3) a pharmacokinetic model to analyze such 
data.  We discuss items 2) and 3) before turning our attention 
to the repeatability and reproducibility of the methods. 
Lastly, we examine how DCE-MRI can be used to assess and 
predict the response of cancers to neoadjuvant therapy. 

II. SUBTLETIES OF DCE-MRI MEASUREMENT 

A. Characterizing the Arterial Input Function 

A particular difficulty associated with quantitative DCE-

MRI analysis is the identification of the arterial input 
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function (AIF).  The AIF is a measure of the contrast agent 

concentration in the plasma, and is a necessary component 

for quantitative modeling as it provides the “input” to the 

system.  The AIF can be measured via blood sampling, but 

this requires frequent, rapid sampling which is often 

uncomfortable in the clinical setting, and unrealistic in the 

preclinical setting given the small blood volume of the mice 

most frequently used in such studies.  An alternative to blood 

sampling is the use of an image-derived AIF, but the 

difficultly associated with this approach is two-fold.  First, a 

major vessel must be visible in the desired field of view and 

this is not always feasible given the region of interest.  

Secondly, the AIF displays rapid uptake and washout of the 

contrast agent; thus, in order to capture the relevant curve 

characteristics, the temporal resolution must be sufficiently 

fast.  Unfortunately, this necessarily limits the spatial 

resolution of the acquisition.  A common approach to avoid 

individual AIF acquisition is to employ a population AIF, 

whereby a similarly situated population of patients is utilized 

to generate an average AIF, which can then be applied to 

future patients [2-7].  This eliminates the need to measure the 

individual AIF and allows for increased spatial resolution.  

Loveless et al. demonstrated that, in the preclinical setting, 

use of a population AIF did not significantly alter 

quantitative results as compared to the patient-specific AIF 

[4].  Parker et al. [7] and Li et al. [3] demonstrated similar 

results in the clinical setting, wherein using a population AIF 

increased the reproducibility of the quantitative parameters.  

Another commonly utilized approach which eliminates the 

need to acquire a patient-specific AIF is the reference region 

(RR) approach [8-10].  The RR approach utilizes a well-

characterized tissue, such as muscle, to provide a second 

differential equation describing contrast agent concentration 

compartmentalization over time.  This second equation 

allows for the elimination of the AIF, and results in a 

solution for the ROI that depends on the characteristics of 

the reference region. 

Each of the above mentioned methods have their own 

strengths and weaknesses and care must be taken to select a 

method that is appropriate for the experiment at hand.  The 

choice in input function is frequently determined by 1) the 

presence of a feeding vessel in the field of view, and 2) the 

required spatial resolution of the experiment.  If high spatial 

resolution data is needed, this precludes the acquisition of 

high temporal resolution data so that a population averaged 

AIF or reference region approach is warranted.  This is also 

the case if a feeding vessel is not available in the field of 

view.  However, if high spatial resolution data is not required 

Techniques and Applications of Dynamic Contrast Enhanced 

Magnetic Resonance Imaging in Cancer 

Stephanie L. Barnes, Jennifer G. Whisenant, Xia Li, Thomas E. Yankeelov* 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 4264



  

Figure 1 shows Ktrans maps obtained on the same breast tumor at two imaging

sessions within one week. Observe how the general pattern of Ktrans values

matches, but there is variation. This example stresses the importance of

establishing the repeatability of DCE-MRI during longitudinal studies.

and a feeding vessel is available in the field of view, then 

direct measurement of the AIF is possible. 

B. Incorporating the Effects of Contrast Agent Diffusion 

Another point of consideration in quantitative DCE-MRI 

analysis is that the delivery of contrast agent (CA) to the 

region under study may not be done so actively; that is, the 

contrast agent may arrive by passive diffusion.  Standard 

quantitative approaches, such as the Tofts-Kety model [1], 

do not consider the effect of extravascular diffusion of the 

CA.  However, diffusion has the potential to have a 

significant effect on contrast agent distribution and the 

observed pharmacokinetics in heterogeneous regions, as is 

often the case in tumor-bearing tissues that typically possess 

much variation in vascularity and necrosis.  

Acknowledgment of this shortcoming has led to the 

development of approaches to account for inter- and intra-

voxel CA diffusion.  Pellerin et al. developed a finite 

difference model to analyze the effect of inter-voxel CA 

diffusion on quantitative DCE analysis [11].  Their model 

that incorporated inter-voxel diffusion by assigning domain 

diffusion coefficients, allowed for quantitative analysis of 

K
trans

 and ve in the presence of diffusion.  When analyzing 

DCE-MRI data in a xenograft model, the standard Tofts-

Kety method resulted in unphysiological values of ve; 

however, the results showed an improvement in the data 

when diffusion was considered.  Fluckiger et al. worked to 

improve the practicality of this approach, by developing a 

less computationally intensive algorithm to include the 

effects of inter-voxel diffusion [12].  Their “diffusion 

compensated” Tofts-Kety model allowed for voxel-specific 

diffusion coefficients that were not dependent on the 

surrounding voxels; the model showed improved results over 

the standard Tofts-Kety model.  Jia et al. utilized a factor 

termed the contrast agent diffusion coefficient (CDC) to 

evaluate diffusion in colorectal liver metastases [13].  The 

approach consisted of evaluating the rate of gradient 

decrease in the signal intensity of similarly-behaving regions.  

Their work showed that the CDC was a repeatable value 

which was able to describe the heterogeneity of the tissue. 

There is a growing awareness in the field that passive 

diffusion of contrast agent in the region under investigation 

can adversely affect the estimate of pharmacokinetic 

parameters.  As these are the very parameters that have been 

shown to be of use in clinical studies, maximizing the 

accuracy with which they can be attained is of great import.  

Thus, the effects of contrast agent should be accounted for in 

certain settings.  Of course, the precision at which these 

measurements can be made is also of great relevance. 

III. REPEATABILITY AND REPRODUCIBILITY OF DCE-MRI 

With the increasing use of DCE-MRI to characterize 

specific aspects of tumor physiology, it is imperative to 

assess the reproducibility in order to gain an understanding 

of the expected error within each imaging measurement. An 

example of DCE-MRI test-retest is shown in Figure 1 in 

which K
trans

 parametric maps of a central tumor slice are 

displayed for two separate imaging sessions (within one 

week) of a patient with breast cancer.  K
trans

 was calculated 

by fitting the dynamic signal intensity for each voxel using 

the standard Tofts-Kety model [1].  The importance of such 

data is that one wants to be able to establish the range 

outside of which any observed changes can be safely 

assumed to be due to changes in biology and not errors in the 

measurement process.  In the figure it is clear that, in this 

patient, while the trends are quite similar the absolute values 

of the pixels are different.  Repeatability and reproducibility 

analyses attempt to characterize this issue. 

Two values of particular interest when assessing 

reproducibility are the repeatability coefficient (r) and the 

95% confidence interval (CI) of the mean; these statistical 

values are useful in, for example, a treatment response study 

as they define a level above which a significant change due 

to therapy can be inferred. The repeatability coefficient r 

defines the expected limit of variability between two scans 

on the same subject in 95% of the cases. More specifically, 

this value defines the difference between scans that can be 

attributed to measurement error as opposed to physiological 

changes in an individual. The 95% CI provides a 

reproducibility measurement of the group mean for any 

specific parameter. The within-subject coefficient of 

variation (wCV) has also been used to evaluate 

reproducibility as it provides a measure of the variability 

within subjects; however, it is not as useful as r or 95% CI 

when interpreting treatment response data.  

Table 1 (next page) summarizes the reproducibility results 

from several clinical and preclinical DCE-MRI studies in 

various types of tumors [14-18]. The reproducibility 

statistics for K
trans

 seem to vary among the clinical and 

preclinical studies; for example, r was 0.26 min
-1

 in patients 

[14], and ranged from 0.005 min
-1

 to 0.22 min
-1

 in rodent 

models of cancer [16-18]. This large range could be due to 

several variables, although it is most likely due to differences 

in data acquisition and analysis protocols. Ferrier et al. [17] 

and Barnes et al. [16] used a power injector for contrast 

agent administration whereas Galbraith et al. [14] and 

Yankeelov et al. [18] used manual injections. Galbraith et al. 

hypothesized that using a power injection to administer the 

contrast agent would significantly improve reproducibility, 

and the data in Table 1 (next page) support this hypothesis. 

The variability associated with ve appears to be less 
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Figure 2 shows the kep maps superimposed on the post-contrast

DCE-MRI data at the pre-NAC (1st column), post-1 cycle of

NAC (2nd column), and post all cycles of NAC (3rd column) time

points for one representative patient achieving pCR. Observe the

significant drop in kep from the first to second time points.

sensitive to the mechanism of contrast agent injection, as ve 

had better reproducibility than K
trans

 in all but one of the 

studies summarized in Table 1. For example, the 95% CI             

ranged between ± 6.0% and ± 7.3%, while the wCV ranged 

between 6.2% and 8.5% [14-16]. Reproducibility in terms of 

r and wCV is similar between K
trans

 and ve in [18]. 

In addition to measuring reproducibility at a single 

institution, it is also imperative to investigate the error 

associated with DCE-MRI protocols across institutions in 

order to facilitate multisite trials.  There have been only 

limited efforts at determining multisite reproducibility for 

quantitative DCE-MRI protocols and this is the subject of 

several ongoing efforts.  Importantly, such investigations are 

also ongoing in other imaging modalities including FDG-

PET.  Only when such statistical issues are determined can 

we truly have confidence that the measurement is ready for, 

e.g., multi-site clinical trials.  As there has been much 

success at single site trials, this is a problem to address. 

IV. CLINICAL APPLICATIONS IN THE NEOADJUVANT SETTING 

In the neoadjuvant setting, cancer patients receive therapy 

to reduce tumor burden to a size more amenable to surgery. 

Neoadjuvant therapy also provides an opportunity to observe 

tumor sensitivity to a particular regimen [19]. However, if it 

were possible to determine that the primary tumor is 

unresponsive, the treatment could be changed to another, 

potentially more effective approach thereby avoiding 

unnecessary side effects and toxicities. DCE-MRI is one 

such method that has been proposed to accomplish this task. 

For example, the I-SPY TRIAL [20] scanned 216 women 

with breast cancers at four time points: prior to the start of 

anthracycline-cyclophosphamide (AC) chemotherapy, prior 

to the second cycle of AC chemotherapy, between AC 

treatment and taxane therapy, and just prior to surgery. This 

study showed that the rate of change of the tumor volume 

and the signal enhancement rate (SER) between therapeutic 

regimens yielded an area under receiver operating 

characteristic curve (AUC) of 0.72 and 0.71, respectively. 

Other studies have employed more quantitative DCE-MRI 

pharmacokinetic models to investigate the ability to predict 

eventual response in breast cancer. Padhani et al. [21] 

performed DCE-MRI examinations in 25 patients with 

primary breast cancer before, after the first and after the 

second cycle of neoadjuvant chemotherapy (NAC) and 

investigated tumor size, K
trans

, ve, and kep.  Both tumor size 

and change in the range of the K
trans

 histogram after two 

cycles of treatment were able to predict eventual response 

with AUCs of 0.93 and 0.94, respectively.  Recently Li et al. 

[22] examined 28 patients using DCE-MRI at three time 

points: pretreatment, post-one cycle of NAC, and just prior 

to surgery.  Semi-quantitative and quantitative physiological 

parameters were evaluated, including tumor longest 

dimension, tumor volume, initial area under the curve, SER 

and SER related parameters, K
trans

, ve, kep, plasma volume 

fraction (vp), and the average intracellular water lifetime of a 

water molecule (τi), using three pharmacokinetic models.  

Among all the parameters, the changes in the SER washout 

volume and kep were the best predictors of pathologic 

complete responders after one cycle of NAC.  The SER 

washout volume yielded an AUC of 0.75, and kep yielded a 

maximum estimated AUC of 0.78. Figure 2 shows the kep 

maps superimposed on the post-contrast DCE-MRI data at 

the pre-NAC (1st column), post-1 cycle of NAC (2nd 

column), and post all cycles of NAC (3rd column) time 

points for one representative patient achieving pathological 

complete response (pCR).  Note that the mean kep has 

decreased from 0.39 min
-1

 at baseline to 0.28 min
-1

 after one 

cycle of therapy.   Li et al. also combined the DCE-MRI and 

diffusion weighted MRI (DW-MRI) data using a simple ratio 

TABLE I.       Repeatability and reproducibility findings for DCE-MRI  

Reference Tumor type Parameters Statistic Findings 

Galbraith 

[14] 

 Various 

(kidney, 

liver, lymph 

node, pelvis 

chest) 

Ktrans 

r 

0.26a min-1 

(-45 to 

+83%) 

95% CI 
 -14% to + 

16% 

wCV 24% 

ve 

r 0.08 

95% CI ±6.0% 

wCV 8.5% 

Jackson 

[15] 
Glioma 

Ktrans 
wCV 

7.7% 

ve 6.2% 

Barnes 

[16] 

human 

breast cancer 

xenograft 

Ktrans 

r 0.076 min-1 

95% CI ±16% 

wCV 17% 

ve 

r 0.11 

95% CI ±7.3% 

wCV 8.00% 

Ferrier 

[17] 

rat brain 

tumor 
Ktrans 

r 0.005 min-1 

95% CI ±12% 

Yankeelov 

[18] 

murine 

breast tumor 

Ktrans r 0.22 min-1 

  wCV 20% 

ve r 0.204 

  wCV 19% 

 r, repeatability coefficient, CI, confidence interval; wCV, within-

subject coefficient of variation 
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(kep/ADC, where ADC is the apparent diffusion coefficient 

from the DW-MRI data) and showed that the integrated data 

have a better ability to predict treatment response [23].  

There also are studies investigating the predictive ability 

of the DCE-MRI parameters on other cancers for which 

neoadjuvant therapy is appropriate.  Kim et al. [24] 

performed DCE-MRI on 33 patients with head and neck 

squamous cell carcinomas before neoadjuvant 

chemoradiation.  K
trans

, ve, and τi were estimated. It was 

reported that the average pretreatment K
trans

 was higher in 

patients achieving a complete response than in those patients 

who saw a partial response (p = 0.001). In the study of Guo 

et al. [25], 69 patients with osteosarcoma were examined 

using DCE-MRI at week 0, week 9, and week 12. K
trans

, kep, 

ve, vp, and the corresponding differences (∆K
trans

, ∆kep, ∆ve, 

and ∆vp) were calculated. It was found that not only K
trans

, 

kep, ve, vp significantly decreased from the baseline to week 9 

and week 12, but also K
trans

, vp, and ∆kep were significantly 

different between responders and nonresponders. 

V. CONCLUSION 

DCE-MRI has already made important contributions to 

clinical science, but there are several technical areas that 

need to be addressed to enhance the utility of the method.   
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