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Abstract— Indirect immunofluorescence imaging is employed
to identify antinuclear antibodies in HEp-2 cells which founds
the basis for diagnosing autoimmune diseases and other im-
portant pathological conditions involving the immune system.
Six categories of HEp-2 cells are generally considered, namely
homogeneous, fine speckled, coarse speckled, nucleolar, cyto-
plasmic, and centromere cells. Typically, this categorisation
is performed manually by an expert and is hence both time
consuming and subjective.

In this paper, we present a method for automatically classi-
fiying HEp-2 cells using texture information in conjunction with
a suitable classification system. In particular, we extract multi-
dimensional local binary pattern (MD-LBP) texture features
to characterise the cell area. These then form the input for a
classification stage, for which we employ a margin distribution
based bagging pruning (MAD-Bagging) classifier ensemble. We
evaluate our algorithm on the ICPR 2012 HEp-2 contest bench-
mark dataset, and demonstrate it to give excellent performance,
superior to all algorithms that were entered in the competition.

I. INTRODUCTION

Indirect immunofluorescence (IIF) is commonly employed
for screening of antinuclear antibodies (ANAs) based on
HEp-2 cells. ANA tests allows identification of diseases
such as systemic rheumatic disease, systemic sclerosis and
mellitus (type-I) diabetes [1]. In IIF, cultured HEp-2 cells
are observed under a fluorescence microscope and then
categorised based on fluorescence intensity and on the type
of staining patterns.

This classification of HEp-2 cells is crucial for diagnosis,
since different patterns give indications for different autoim-
mune diseases. At the same time, since performed manually
by an expert, it is a laborous and time consuming task. A
computer-aided diagnosis (CAD) approach would hence not
only speed up the task but also lead to objective, reproducible
results. HEp-2 cells are typically categorised into six groups:
homogeneous, fine speckled, coarse speckled, nucleolar, cy-
toplasmic, and centromere cells, which are also the classes
we consider in this papers. Example images of each class
are shown in Fig. 1.

In this paper, we utilise multi-resolution texture informa-
tion for categorising HEp-2 cell images. In particular, we
employ multi-dimensional local binary pattern (MD-LBP)
features to characterise the cell area. LBP descriptors [2]
yield relatively simple yet powerful texture features describ-
ing the relationships of pixels to their (local) neighbour-
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Fig. 1. Sample HEp-2 cell images (with manually defined borders in white)
from the ICPR 2012 contest dataset.

hoods. MD-LBP is a multi-scale extension of LBP that also
preserves the relationships between the scales in form of a
multi-dimensional histogram [3]. MD-LBP features form the
input for a classification stage for which we utilise a mar-
gin distribution based bagging pruning (MAD-Bagging) [4]
classifier ensemble. We evaluate our algorithm on the ICPR
2012 contest dataset [5], and show that it provides very
good performance, superior to all algorithms entered in the
competition.

II. RELATED WORK

Automated classification of HEp-2 cell images has re-
cently received increased attention, in particular with the
running of a competition at ICPR 2012 [5]. A number
of approaches were presented at the contest, of which we
summarise a select few in the following.

In [6], images are contrast normalised and statistical
texture features based on the grey level co-occurrence matrix
(GLCM) [7] as well as frequency domain texture features
based on the discrete cosine transform (DCT) [8] are ex-
tracted. To improve classification performance, a two-step
feature selection method is employed where the first step
is based on a minimum redundancy maximum relevance
algorithm to select a candidate feature set, while a final
feature set is obtained using a sequential forward selection
method. A support vector machine (SVM) [9] is used for
classification.

In [10], DCT coefficient features, local binary pattern
(LBP) [2] and Gabor texture descriptors [11] as well as
various global appearance statistical features (area, perimeter,
average intensity and standard deviation of the cell region as
well as the ratio of cell and background) are utilised. A multi-
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class boosting SVM [12] is employed for classification with
different SVMs merged into a classifier and boosted using a
modified AdaBoost.M1 algorithm [13].

Shape and texture features are combined in [14]. The cell
images are thresholded at different intensity levels and shape
based descriptors (perimeter, eccentricity, etc.) and intensity
based features (average intensity, standard deviation, etc.) are
extracted at each level. Following this, gradient magnitude
features are calculated after smoothing the image using
Gaussian kernels with different parameters. Finally, GLCM
texture features are also calculated. The obtained features are
then fed to a Random Forest classifier [15].

In [16], shape features based on the Hessian matrix are em-
ployed, where the eigenvalues of the Hessian and the related
eigenvector orientations are used for shape characterisation.
Edge features are extracted using an adaptive robust structure
tensor and histogram of oriented gradients (ARST-HOG) [17]
approach. Finally, texture information, based on LBP, is also
utilised. Classification is performed using regression trees as
base classifiers and a ShareBoost algorithm [18] for classifier
fusion.

In [19], along with GLCM and HOG [20] features, region-
of-interest (ROI)-based descriptors are used which include
shape features (eccentricity, perimeter, etc.) and intensity
based features (derived from intensity percentiles). For clas-
sification, an SVM is chosen as the best performing algo-
rithm.

III. HEP-2 CELL TEXTURE ANALYSIS USING MD-LBP

Previous approaches to automatically classifying HEp-2
cells are typically based on several features, while texture
features are employed in the majority of algorithms. In this
paper, we utilise a single, relatively simple type of texture
feature based on local binary patterns (LBP) that we show
to yield very good HEp-2 cell recognition.

LBP [2] describes the local neighbourhood of a pixel by
thresholding neighbouring pixels g, with the centre pixel
value g.. The resulting sequence of Os and 1s is then known
as the local binary pattern, formally expressed as

8
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and a histogram of these patterns is generated to summarise
texture information of an image or a region of interest. LBP
is inherently invariant to monotonic intensity transformations
and hence more robust than other techniques.

LBP patterns are typically obtained from a circular neigh-
bourhood where locations in the neighbourhood that do not
fall exactly at the centre of a pixel are obtained through
interpolation. If a texture is rotated, essentially the patterns
(that is, the Os and 1s around the centre pixel) rotate with
respect to the centre. Rotation invariance can hence be
obtained by mapping all possible rotated patterns to the same

OO0
OO0
OO0

Fig. 2. Uniform LBP patterns.

descriptor. Furthermore, certain patterns are fundamental
properties of texture and may account for the majority of
LBP patterns. To address this, only uniform patterns can be
utilised where a uniformity measure is defined by the number
of transitions from O to 1 or vice versa in the LBP code.

Based on 8 neighbouring pixels, 9 different rotation in-
variant uniform patterns (with maximal two transitions) can
be defined as shown in Fig. 2), while the remaining patterns
are accumulated in a single bin, thus giving a histogram of
10 bins. This yields a powerful texture descriptor that was
shown to work well for texture classification, especially when
obtained at multiple scales [2], [21].

In conventional multi-scale LBP, the histograms for each
scale are simply concatenated to form a one-dimensional
feature vector. This leads to a loss of information regarding
the relationships between patterns across different scales and
additional ambiguity. Multi-dimensional LBP (MD-LBP) [3]
addresses this by preserving the joint distribution of LBP
codes at different scales in form of a multi-dimensional
histogram of LBP values. To do so, for each pixel, LBP codes
at different scales are obtained, while the combination of
these codes identifies the histogram bin that is incremented.

Our approach to derive MD-LBP texture features from
a HEp-2 cell image is illustrated in Fig. 3. We use the
green channel of IIF images resized to 64 x 64 pixels from
which we gather rotation invariant uniform LBP texture
information. The MD-LBP histogram, extracted from the
area of the cell and based on three scales with radii {1, 3,5},

HEp-2 Cell \

MD-LBP

Fig. 3. MD-LBP histogram generation for HEp-2 cell image.
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is then used in the subsequent classification stage.

IV. HEP-2 CELL CLASSIFICATION USING MAD-BAGGING

Based on the MD-LBP features derived above, we then
perform classification for which we employ an ensemble
learning approach. The idea of ensemble classifiers [22] is
to exploit the strengths and local competencies of a pool
of classifiers, while at the same time reducing their individ-
ual weaknesses. Consequently, an appropriately constructed
combination of several predictors can lead to better and more
robust classification performance compared to any single
classifier.

In particular, we utilise a margin distribution based bag-
ging pruning (MAD-Bagging) [4] classifier ensemble. Bag-
ging is a well known, simple yet effective technique for
generating an ensemble of classifiers [23]. A collection of
base classifiers is trained on bootstrap replicates of the
training set and the outputs of all trained base classifiers are
combined using simple voting. In general, the error of bag-
ging decreases as base classifiers aggregated in the ensemble
increase. Eventually, the error asymptotically approaches a
constant level when the size of the ensemble becomes very
large.

It is well accepted that generalisation performance of base
classifiers and the diversity among base classifiers greatly
influence the performance of the ensemble. Bagging uses
bootstrapping to generate diverse training sets which then
leads to diverse classifiers. On the other hand, selecting only
a subset of candidate base classifiers may lead to a signifi-
cant improvement of the final ensemble. Algorithms can be
developed to select diverse and accurate base classifiers in
order to yield compact and powerful sub-ensembles [24].

MAD-Bagging utilises the margin of the ensemble as an
optimisation objective and derives an L; regularised squared
loss function. By solving the resulting optimisation problem,
a sparse weight vector for the candidate base classifiers
can be obtained. Then, only base classifiers with non-zero
weights are included in the final ensemble, while the others
are discarded.

Assuming a set of samples X = {(z;,v;)}X, with y; €
{—1,+1}, a base classifier h; performs a mapping from X
to {—1,+1}. The voted ensemble f(x) is of the form

T
Fla) = wih;(), 3)
j=1

where w; is the (non-negative) weight assigned to base
classifier h;, Z;F:l w; = 1, and T' is the number of candidate
base classifiers available. An error occurs for x; if and only
if the output of the voting classifier and the label y; do not
have the same sign. Hence, y;h;(z) is the difference between
the weights assigned to the correct label and the weights
assigned to the incorrect label.

y;h;(x) is considered the sample margin r; with respect
to the voting classifier f. In order to obtain a good margin
for each sample, a loss function ), C(y;h;(x)) is designed
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subject to W; > 0. This objective function leads to an
optimal margin distribution over the training samples.

The overall procedure of MAD-Bagging is illustrated in
Fig. 4.

V. EXPERIMENTAL RESULTS

For evaluation, we use the ICPR 2012 HEp-2 classification
contest dataset [5] which is based on 28 HEp-2 images
acquired by means of a fluorescence microscope under 40-
fold magnification coupled with a 5S0W mercury vapour
lamp. Images were taken with a SLIM system digital camera,
and stored in 24-bit true-colour format with a resolution of
1388 x 1038 pixels. Cells were manually segmented and
annotated by a specialist to obtain a ground truth for the
competition.

The training dataset provided to contestants comprises 721
samples of individual cells, extracted from part of the cap-
tured images. There are 150 homogeneous, 94 fine speckled,
109 coarse speckled, 102 nucleolar, 58 cytoplasmic, and
208 centromere cells (an example of each class is given in
Fig. 1). The testing dataset, extracted from different images,
contains 734 cells in total of which 172 are homogeneous,
114 fine speckled, 101 coarse speckled, 139 nucleolar, 51
cytoplasmic, and 149 centromere cells.

For MAD-Bagging, 100 bags were used, and support
vector machines, in particular one-against-one multi-class
SVMs [25] with linear kernels and kernel parameters op-
timised as in [26], served as base classifiers.

We first evaluate the performance on the training dataset,
by performing 10-fold cross validation (10CV), where the
dataset is split into 10 partitions and training is performed

TABLE I
HEP-2 CELL CLASSIFICATION RESULTS ON ICPR 12 TRAINING DATA.

algorithm (evaluation) accuracy
Cataldo et al. [6] (10CV) 86.96
Li et al. [10] (5CV) 98.34
Strandmark et al. [14] (LOOCV) 97.40
Ersoy et al. [16] (5CV) 92.80
Ghosh and Chaudhary [19] (10CV)  91.13
Proposed (10CV) 97.22
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TABLE II
CLASSIFICATION RESULTS ON ICPR 12 TEST DATA.

method accuracy [%]
Cataldo et al. [6] 48.50
Li et al. [10] 64.17
Strandmark et al. [14] 47.82
Ersoy et al. [16] 49.18
Ghosh and Chaudhary [19] 59.81
top ICPR contest entry (Nosaka and Fukui, unpublished) 68.66
Proposed 71.39

on all but one partition while testing is conducted on the
remaining one, reporting the average classification accuracy
over all 10 folds. The results are reported in Table I, which
also lists the classification accuracies on the same dataset of
the methods discussed in Section II'.

From Table I, we can see that our MD-LBP based HEp-2
cell classification approach affords good performance, giving
a classification accuracy exceeding 97% and thus outper-
forming three of the other five algorithms.

As the ICPR contest revealed [5], while several of the 28
submitted entries obtained high classification performance
(95+%) on the training dataset, accuracy on the test dataset
was significantly lower, suggesting that the test data is much
more challenging. The best approach, by Nosaka and Fukui,
was reported to give a classification accuracy of 68.66%,
while about half of the submitted approaches reached less
than 50% [5] including some of those discussed in Sec-
tion II (most submitted approaches were not published).
Interestingly, also a medical doctor, a specialist with 12 years
experience in immunology, did not fare much better with a
correct recognition rate of 73.30%.

In Table II, we report the results obtained on the test
dataset. As we can see from there, impressively our method
outperforms all competition entries on the test dataset with
a classification accuracy of 71.39%.

VI. CONCLUSIONS

In this paper, we have presented an effective approach to
the automated classification of HEp-2 cell images obtained
through indirect immunofluorescence imaging. Our method
is based on extracting useful texture information from the
cell area. In particular, multi-dimensional local binary pattern
(MD-LBP) descriptors are employed and then classified
using a margin distribution based bagging pruning (MAD-
Bagging) classifier ensemble. Based on the ICPR 2012
competition dataset, our approach is shown to deliver very
good classification performance and to outperform all entries
submitted to the contest.
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