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Abstract—Axonal transport velocities are obtained from
spatio-temporal maps called kymographs developed from time-
lapse confocal microscopy movies of neurons. The kymographs
of axonal transport of C.elegans worms are much noisier due to
in vivo nature of imaging. Existing methodologies for velocity
measurement include laborious manual delineation of axonal
movement ridges on the kymographs and thereby determining
particle velocities from the slopes of ridges marked. Manual
kymograph analysis is not only time consuming but also
prone to human errors in marking the ridges. An automated
algorithm to extract all the ridges and determine the velocities
without significant manual efforts is highly preferred. Not many
methods are currently available for such biological studies. We
present an almost automated method based on information
fusion using LDA classifier, morphological image processing
and spline fitting for determining axonal transport velocities.
Experimental analysis of 50 kymographs shows considerable
reduction of 89% in time taken with manual intervention of
10.83%. Comparitive study with the results of two of the
previous literatures shows that our algorithm performs better.

I. INTRODUCTION

Axonal transport is an essential cellular process which has

been shown to play a key role in various neurodegenerative

diseases. Biologists working in the area of axonal transport

are still widely investigating the role of transport character-

istics like velocity, flux, pause time and pause frequency for

such diseases. Time lapse confocal microscopy is used for

imaging this transport phenomenon. The captured movie is

converted to a spatio-temporal map called kymograph which

encodes the position of particle at a given point of time.

Moving particles are represented as slant lines whose slope

gives the velocity of the particle. Stationary particles are seen

as vertical lines. We propose a method to quantify axonal

transport velocity from kymographs which when compared

to manual analysis, takes lesser time and effort.

II. A BRIEF REVIEW OF PREVIOUS RESEARCH

The manual analysis of kymograph is not only laborious

and time consuming task but also prone to human errors

and hence automating the process is of much significance

to the biologists. We have used kymographs with vesicles

of C.elegans (a worm) as the transport particle. Various

methods have been proposed in recent years for automated

analysis of axonal transport using kymograph generation
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and tracking algorithms. However, these algorithms are not

robust enough for C.elegans movies with noisy kymographs.
C.elegans are used as model organisms because of their

transparent structure that facilitates live/in vivo imaging. The

neuron diameter of C.elegans is of the order of 300 nm. This
creates a heavy traffic in the axon wherein the particle count

is high resulting in a kymograph with a large number of

curvilinear structures which are difficult to discern. The size

of the C.elegans vesicles is also small, of the order of 30-40
nm, which in turn provides lesser surface area for fluorescent

proteins like Green Fluorescent Protein (GFP) to tag. These

particles are imaged at a poor x-y resolution of 280nm.

Movies are captured at 5 frames/second which results in low

signal to noise ratio (SNR). The intensity-based algorithm

presented in [1] requires very high spatial resolution of

kymographs. The method presented in [2] works on particles

bigger than C.elegans vesicles and the kymographs had high
SNR. The automated velocity measurement approaches in

[3] and [4] based on image cross and auto correlation of the

kymograph columns and Hough transforms are not suitable

for high noise levels. Algorithms in [5] and [6] using Stegers

edge detection are unable to trace faint ridges. Comparison

of kymographs of C.elegans movie with the kymograph

from [5] shows that particle movement is more heterogenous

in the C.elegans kymograph. We tried our algorithm on

kymographs from [5] and [6] . The edge result from the

paper and our algorithm shows that our algorithm detects

more number of true edges as shown in Fig. 1 and Fig. 2.

In [9], the kymograph generation algorithm works well only

when the axon of the worm lies horizontally. We have used

ImageJ plugins for kymograph generation.

(a) (b) (c)

Fig. 1: (b) shows kymograph from [5]. (a) shows result of

[5]. (c) shows result of proposed method on (b). The red lines

are the detected lines by algorithm. The rest of the colours

show missed out lines.
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(a) (b) (c)

Fig. 2: (b) is a kymograph from the article [6]. (a) and (b) are

the results from [6] and our algorithm respectively. The red

lines indicate the ones detected by algorithm. Green lines are

the undetected lines. The blue lines are the falsely detected

lines. From the figure, it is clear that the number of true

positive edges detected by our algorithm are more than that

shown in [6].

III. CHALLENGES IN AUTOMATING THE ANALYSIS OF

KYMOGRAPHS

The challenges of existing methodology routinely used by

biologists are: 1) manual delineation of edges by zooming

the image 2) poor slant ridge intensities and high background

noise and 3) high intensities of vertical lines of stationary

particles amongst the slant lines to be extracted. Hence the

slant lines of interest i.e., the anterograde and retrograde

(particles moving towards cell body and synapse respec-

tively) movements need to be enhanced and background

noise suppressed.

IV. MATERIAL AND METHODS

We have used the transgenic jsls821(wild type or the

normal phenotype) of C.elegans expressing GFP::RAB3 in

synaptic vesicles of the touch neurons. The kymograph

has distance along the x-axis and time along the y-axis.

The algorithm has the 3 main modules - 1. Information

fusion based on Linear Discriminant Analysis (LDA) 2. Post

processing and 3. Velocity estimation

Classification: Classification involves training and testing.

The training phase requires feature specification of slant

lines as foreground and other regions as background. The

feature images for training are derived by using various

feature extraction methods applied to 8 kymographs. 50

kymographs are used for testing. The 6 best features chosen

empirically for training are Gabor filtered image, Frangi

vesselness measure, Frangi vesselness of Gabor image, a

hybrid vesselness measure using Gabor and Frangi, Top-

hat transform of Gabor image and Anisotropic diffusion

of Gabor image. Gabor filters are sinusoidally modulated

Gaussian functions . The real Gabor filter kernel oriented at

the angle θ = π
2
is formulated as

g(x, y) =
1

2πσxσy

exp(−
1

2
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+
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)) cos(2πf0x) (1)

where σx and σy are the standard deviations along the x

and y directions respectively and f0 is the frequency of the

modulating sinusoid. σx = τ

2
√
2 ln 2

, where τ is the thickness

of the line segment and σy = lx, where l determines the
elongation of the Gabor filter in the orientation direction

w.r.t. its thickness [7]. We rotate this kernel to enhance

curvilinear structures at different orientations. The maximum

response across all the orientations is called the Gabor image.

The vesselness measure proposed by Frangi in [8] is given

as

v0(s) =

{

0 λ2 > 0

exp(−
R2

B

2β2 )(1− exp(− S2

2c2
)) otherwise

(2)

where RB differentiates lines from blobs, S is the Frobenius

norm, and parameters β and c are the weighing factors.

Two features are derived from Frangi vesselness. One is

the vesselness map on the original kymograph and the

other is the vesselness map on the Gabor image. The

Frangi vesselness map of Gabor has the advantage that

it combines the enhancement property of Gabor filter and

Frangi vesselness along with the background suppression of

the Frangi vesselness. This has also helped in enhancing

the very faint curvilinear structures present in the image.

The hybrid measure of Gabor and Frangi makes use of

the vesselness function of Frangi but the two eigen values

are now replaced with the magnitude of Gabor along the

vessel direction and the average magnitude along all other

directions except for vessel direction. This method proves to

provide a more enhanced feature than Frangi vesselness. The

Top-hat transformation of the Gabor filtered image is done

in all the directions using a line structuring element and the

maximum response is found out. Both positive and negative

classes are hand drawn on all 8 images. Pixels depicting

the slant lines are marked as positive. Those pixels that

belong to the bright vertical lines (stationary particles) and

homogeneous background region are labelled as negative.

After training phase, a test kymograph image is given to

the LDA classifier. A probability map is generated by the

classifier for the test image which shows the probability of

each pixel belonging to a curvilinear structure.

Post-processing: The post-processing algorithm is used to

extract entire curvilinear ridge features from the probability

map, remove noisy and false positive edges and fit smoothing

splines on the extracted ridges. Curvilinear ridges are ex-

tracted by repeated morphological opening with oriented line

structuring elements (Fig. 3). For anterograde ridges, the line

structuring elements are oriented along directions from 100◦

- 170◦ with respect to the positive X-axis. For retrogrades

ridges, the structuring elements are oriented along 10-80◦.

Each opening operation enhances the slant curvilinear ridges

with respect to the background. The ridge image obtained

by summing up all the opened images yields high ridge re-

sponses and low noise and background intensities. The ridge

image so obtained is denoised by Frangi vesselness filter

and binary thresholded to extract all the prominent edges. In

order to retain only the curvilinear structures, we perform

morphological reconstruction by geodesic dilation on each

connected component of the binary image. Reconstruction

ensures that false and noisy ridges are eliminated. Erosion

of the connected components by a slanted (45 and 135

degrees) line structuring element yields the marker image

for reconstruction. The reconstructed binary image has all
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(a) (b)

Fig. 3: (a) shows a probability map. (b) shows the result

of repeated morphological openings for anterograde compo-

nents.

the slant ridges that contribute to velocity computations.

However in some ridges, the presence of horizontal or

vertical lines due to discretisation artifact causes the slope

along that segment to be 0 or infinity respectively. Some

of the ridges are jagged leading to incorrect slope value.

This problem is solved by fitting a smoothing spline with

smoothing parameter 0.05 to the ridge, as shown in (Fig.

4), so that variations are smooth and continuous, thereby

enabling the possibility of obtaining instantaneous velocities

and acceleration values.

(a) (b) (c)

Fig. 4: (a) is the original kymograph. (b) is the image after

postprocessing. (c) shows the fitted spline on the anterograde

ridges.

Velocity computation: For each component, the x-

coordinates of the spline are the column pixel positions on

the image. The corresponding y-coordinate positions (row

pixel positions) are evaluated from the spline curve. The

following steps are followed in velocity computations. a.

Compute the coordinate values of xi and yi at equally spaced
points on the curve by spline interpolation. b. Slope of the

nth point on the curve is, Slope(n) = (yn+1− yn)/(xn+1−

xn). c. For each slope value the corresponding velocity is

computed as, V elocity = (1/slope) d. Overall velocity =

mean of all velocity values on the all the curves on the image.

Removal of intersecting ridge components and spuri-

ous branches: A continuous set of points without branches

is required as otherwise spline fitting would render a curve

that goes in between the branches. Spurious ridges and

branches are removed by identifying the two farthest end

points and the intermediate branch points as shown in Fig.

5. These points are joined by using Dijkstra’s algorithm. This

method is preferred over morphological pruning which can

be used only if the branches are small. Also, repeated pruning

operation reduces the length of the main trunk and hence is

not helpful.

V. RESULTS AND DISCUSSION

Our algorithm is evaluated in terms of the time taken

for manual efforts versus semi-automated method, velocity

(a) (b) (c) (d) (e) (f)

Fig. 5: (a) Connected component with a branch. (b) spline

fitting on this component gives an incorrect curve that passes

in between the branching ridges 2D plot of the spline curve

fit of a connected component. (c) Removing the junction

point disconnects the component into three short components

making them insignificant for velocity computations. (d)

Farthest end points and intermediate junction points. (e)

Main trunk obtained from Dijkstra’s algorithm. (f) Spline

curve fitting on (d).

comparisons and error analysis for 50 kymographs. The final

result depicting the lines detected by the algorithm is shown

in Fig. 6.

(a) (b) (c)

Fig. 6: (a) is the inverted contrast adjusted original kymo-

graph. (b) is the result of the proposed algorithm. (c) shows

the detected line overlapped on the original kymograph with

red and green lines showing anterogrades and retrogrades

respectively.

The algorithm takes on an average 115 seconds for a

kymograph. The length of false positives ridges and the

length of ridges missed out by the algorithm are noted.

From these, the percentage manual intervention is found

to be around 10.83% which means that the algorithm is

able to detect 89.17% of true ridges without manual efforts.

The performance of the algorithm in extracting ridges when

compared to 2 of the previous literatures is shown in 1 and

2. 10.83% of manual efforts is equivalent to spending 10

minutes whereas the manual analysis takes on an average 90

minutes for a kymograph. We have analysed the velocities

of kymographs of jsls821 strain (wild type) using the semi-

automated method and compared the results with the manual

method of analysis. Fig. 7 shows comparitive bar chart of

mean velocities of manual and semi-automated method for

anterogrades and retrogrades. A one-to-one comparison for

each kymograph shows that the mean velocities are closer to

those of manual method. Student’s t-test assuming unequal

variances was done for α = 0.05. Out of 100 comparisons

(50 anterogrades and 50 retrogrades), p > α for 88 cases.

Manual delineation of the ridges yields piece-wise lines for

each component. This leads to discrete set of velocities in the

histogram plots as shown. With spline fitting, the histogram

is smooth and most of the velocity components are clustered

around the range specified by the biologists. A continuous
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Fig. 7: (a) and (b) show the comparison of velocities from

manual and computer assisted methods for anterogrades and

retrogrades of 50 kymographs.

plot of histogram shows that the missed velocity bins in the

manual analysis are captured by the automated spline fitting

and velocity computation algorithm. The correctness of the

automated method is confirmed by the Gaussian shape of the

histogram clustered around the actual velocity range defined

by the biologists for C.elegans (Fig. 8). The distribution of

absolute error for anterogrades and retrogrades is shown in

Fig. 9. The mean error for anterogrades is 0.03µm/s and

retrogrades is 0.06µm/s.
VI. CONCLUSION

We have developed a semi-automated algorithm for de-

termining axonal transport velocities from kymographs. The

algorithm based on LDA classifier, morphological image

processing and spline fitting is a good alternative to manual

analysis in terms of reduction in time taken by 89% with

minimal differences in mean velocities, mean error being

0.03µm/s and 0.06µm/s for anterogrades and retrogrades

respectively. In addition, our algorithm gives continuous

instantaneous velocities which was not obtained with manual

analysis. Our future work will focus on computing other

metrics like pause time and pause frequency and developing

a fully automated solution for axonal transport velocity

estimation.
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Fig. 8: Comparison of normalized velocity distributions

between the manual and computer assisted method for an-

terogrades and retrogrades of wild type kymographs. (a) and

(b) show the manual results of anterogrades and retrogrades

velocity respectively. (c) and (d) show the computer assisted

results of anterogrades and retrogrades velocity respectively.
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Fig. 9: (a) and (b) show the absolute error distribution for

anterogrades (mean error 0.03µm/s) and retrogrades (mean
error 0.06µm/s) respectively. X axis shows error in µm/s.
Y axis shows the number of kymographs. This shows that

results of manual and semi-automated methods are closer to

each other.
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