
  

 

Abstract— Breathing sounds analysis conveys valuable 

information in relation to obstructive sleep apnea (OSA) during 

both sleep and wakefulness. In this study, we investigated 

whether the breathings sounds spectral and higher order 

statistics characteristics (HOS) change from wakefulness to 

sleep, and more importantly whether this change is associated 

with severity of OSA. Tracheal breathing sounds of 6 

individuals with severe OSA and 6 non-OSA individuals during 

wakefulness and stage 2 of sleep, both in supine position, were 

used in this study.  The sounds were recorded simultaneously 

with full overnight polysomnography (PSG) assessment. First, 

the sounds of 5 noise-free breathing cycles were extracted and 

sequestered into inspiratory and expiratory phase segments 

manually for each study subject. After normalizing each sound 

segment to its energy, spectral and HOS features were 

calculated. Several features including the median bispectral 

frequency (MBF), spectral bandwidth (BW) and bispectrum 

Harmonic Mean (HM) were found to change statistically 

significantly from wakefulness to sleep mostly in severe OSA 

group but not as much in non-OSA group. The most prominent 

and consistent change between the two groups of OSA and non-

OSA was observed in MBF; it changed from wakefulness to 

sleep in the two groups in an opposite manner; this observation 

is congruent with the hypothesis that the upper airway in OSA 

population has an increased non-homogeneity. 

 

1. INTRODUCTION 

      Breathing sounds analysis provides valuable information 

about airway structure and respiratory disorders including 

obstructive sleep apnea (OSA). Analysis of breathing sounds 

recorded overnight has been used for OSA detection [1-4] 

with reasonable accuracies compared to that of 

polysomnography (PSG – the Gold Standard of OSA 

detection). Recently analysis of breathing sounds recorded 

for a few minutes (5 breathing cycle) during wakefulness has 

been used for OSA screening to identify those at high risk of 

severe OSA with an accuracy of roughly 70-85% [5-7]. The 

goal of this study is to investigate which breathing sounds 

feature changes the most from wakefulness to sleep and 

whether that change is significantly different between the 

two groups of OSA and non-OSA. The output of the study 

may help identifying more characteristic sounds features for 

OSA identification as well as understanding the mechanism 

of upper airway collapse in OSA individuals.  
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Imaging studies have shown the upper airway of individuals 

with severe OSA is narrower than those without OSA [8] 

and also more collapsible during sleep [9]. Thus, we 

hypothesize these structural changes of the upper airway 

must change the breathing sounds that is produced as a result 

of air turbulence in the upper airway. The more collapsibility 

of the airway plus its narrowing at some portions of the 

airway may cause some vortices in the respiratory airflow; 

these changes will change the breathing sounds 

characteristics. While, spectral analysis of the sounds is 

expected to reflect these changes, the effect of plausible 

vortices would be better seen by higher order statistics, 

specifically bispectral analysis. Thus, in this study we 

calculated several bispectral and spectral features of the 

breathing sounds from both wakefulness and sleep, and 

investigated their changes within and between two groups of 

individuals with and without OSA. 

2. METHODS AND MATERIALS 

The data was adopted from a previous study [5], in which 

tracheal breathing sounds were recorded from patients 

undergoing full overnight PSG assessment simultaneously. 

We selected data from two groups of study subjects: those 

whose Apnea/Hypopnea index (AHI) was less than 5 (non-

OSA Group: 6 individuals, 5 males, 50±15.2y) and those 

with an AHI> 30 (OSA Group: 6 individuals, 5 males, 

55.7±10.3y). In order to reduce variability, tracheal 

breathing sounds during sleep were extracted from the stage 

2 of sleep in supine position (the most common stage and 

position among patients). Wakefulness data were extracted 

from their first few minutes, while they were awake and 

lying in supine position. From each wakefulness and sleep 

sound dataset, 5 noise-free respiratory cycles of breathing 

sounds were extracted and sequestered into inspiratory and 

expiratory segments. After normalizing each segment to its 

energy, spectral and High Order Spectrum (HOS) features, 

as described below, were calculated.  

Power Spectrum (PSD) was calculated using Welch 

method as [10]: 

   ∑         
             (1) 

where f is the frequency, P (.) is the power of the signal, and 

Fl=100 Hz, Fu=2500 Hz were chosen as the lower and 

upper frequency ranges, respectively. The PSD was 

estimated over windows with the length of 80ms and 50% 

overlap [4]. 
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Spectral Centroid (SC) is the weighted average frequency 

of the area under the PSD for the aforementioned frequency 

band and was calculated as [11]: 
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Spectral Bandwidth (BW) presents the weighted average of 
the squared distance between different frequency components 
and spectral centroid [12]:  

   
∑                 

  

∑         
  

                

where SC is Spectral Bandwidth. 

Bispectrum (BS) is the third-order frequency-domain 
measurement [13], and is estimated as  
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where   
     is the third-order cumulant, which is calculated 

as  

  
                                                     (5) 

and E {.} is the statistical expectation of the signal X (.), 
which has been shifted by       in time.  

Median Bi-Frequency (MBF) is the frequency, at which the 
areas of bispectrum at each side of MBF are equal [13].  

Mean-Absolute and Mean-Angle of Bispectrum 
Coefficients: The bispectrum coefficients are complex values. 
Thus, they have amplitude and angle. The mean of these 
parameters were extracted as two features.  

Harmonic Mean of Bispectrum Coefficients: The 
bispectrum is a complex-valued squared matrix. The size of 
this matrix is 2M  2M, which is symmetric diagonally. 
Therefore, for decreasing calculation we should reduce this 
matrix to a real-valued feature without losing much 
information [6]. For this purpose, many methods have been 
provided in [6, 7, 14-18]. One of these methods is called 
Harmonic Mean (HM) calculated as [14].  
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where B(.) is the estimated bispectrum coefficients.  

Harmonic Mean of Real-Bispectrum Coefficients (RHM) 
is calculated by applying equation (6) to the real part of 
bispectrum coefficients [14]: 
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Arithmetic Mean of Bispectrum Coefficients (AM) is also 
used to reduce the size of bispectrum coefficient matrix [10-
14]: 
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Arithmetic Mean of Real-Bispectrum Coefficients (AMR) 
is calculated similar to AM feature but for real parts of 
bispectrum coefficients [14]:   
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The above features were calculated from each respiratory 
phase, and their change from wakefulness and sleep were 
investigated within and between the two groups of OSA and 
non-OSA subjects. 

3. RESULTS  

      All of the features showed changes from wakefulness to 

sleep in both OSA and non-OSA groups but not necessarily 

consistently. The most significant and consistent changes 

from wakefulness to sleep in both groups were observed by 

MBF, HM and BW features. Figures 1 and 2 show the MBF 

feature (averaged over the 5 breathing cycles for each 

subject) during sleep and wakefulness for OSA and non-

OSA groups, respectively.  

 
Fig. 1. Mean and standard error of MBF value of breathing sounds 

(averaged over the 5 breathing cycles) of 6 non-OSA subjects during sleep 

and wakefulness 

 

 
Fig. 2. Mean and standard error of MBF value of breathing sounds 

(averaged over the 5 breathing cycles) of 6 OSA subjects during sleep and 

wakefulness 
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As can be seen, the MBF values decreased during sleep 

compared to that during wakefulness in all individuals of 

OSA group except one (subjects 3, Fig. 2); this relationship 

was reversed for majority of non-OSA group (Fig. 1). This 

reversed relationship can be better seen in the scatter plot in 

Fig. 3. 

      Figures 4 and 5 depict the BW features calculated from 
during wakefulness and sleep of OSA and non-OSA subjects, 
respectively. This feature showed statistically significant 
changes between wakefulness and sleep among OSA subjects 
but not among non-OSA subjects (Table 1). However, as it is 
clear from the bar graphs, the change was not consistent 
among the subjects; thus, one cannot conclude any consistent 
physiological changes associated with OSA from this feature.  

 

 Fig. 3. Scatter plot of MBF values (averaged over 5 breathing cycles) during 
sleep and wakefulness of OSA and non-OSA subjects.   

 

 

Fig. 4. Mean and standard error of BW value of breathing sounds (averaged 
over the 5 breathing cycles) of 6 non-OSA subjects during sleep and 

wakefulness 

 

 

 

Fig. 5. Mean and standard error of BW value of breathing sounds (averaged 
over the 5 breathing cycles) of 6 OSA subjects during sleep and wakefulness 

 

     Since the data did not pass the normality test, instead of t-
test, the Mann-Whitney U-test was used to investigate 
whether there was any significant difference in the features 
values between wakefulness and sleep within each of the two 
groups of OSA and non-OSA; the results are shown in Table 
1. As can be seen, the changes of the first 4 listed features 
from wakefulness to sleep were found to be noticeably 
different in the two groups of OSA and non-OSA.  

4. Discussion AND Conclusion 

      In this pilot study, we investigated how the spectral and 

higher order statistical characteristics of the breathing 

sounds may change from wakefulness to sleep, and whether 

this change might be different between two groups of OSA 

and non-OSA groups. 

     Almost all of the spectral and bispectral features showed 

some changes from wakefulness to sleep; overall, those 

changes were more significant in OSA group (Table 1). 

Comparisons of the spectral and bispectral features indicate 

that changes in breathing sounds between wakefulness and 

sleep in relation OSA are better represented by the bispectral 

features (MBF); they show more consistent changes within 

and between the two groups of OSA and non-OSA. This was 

expected: it is known that the upper airway of individuals 

with OSA is more collapsible [19], and that changes the 

airway structure; thus, expectedly the flow of air in a more 

collapsible airway may cause turbulence and perhaps 

vortices even during normal breathing. Breathing sounds are 

due to the flow of air in trachea; thus, the turbulence and/or 

vortices of airflow in trachea would be reflected more 

noticeably in the breathing sounds bispectrum because if 

there is a phase coupling in the two sources of air oscillation 

it will not be shown in power spectrum but only be reflected 

in higher order statistics, i.e. bispectrum of the sounds 

signals.   
     The feature that showed the most significant and 
consistent changes within and between the two groups of 
OSA and non-OSA was Median Bi-Frequency, MBF. As can 
be seen in Fig. 3, for most of the subjects in both groups the 
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change of MBF from wakefulness to sleep was small. 
However, the important observation here is that the changes 
of this feature from wakefulness to sleep in the two groups 
were almost opposite: overall for non-OSA group, it 
increased during sleep, while in OSA group it decreased.  
This indicates a structural change of upper airway in the OSA 
group compared, and is supportive of the results of a recent 
study of our research team [20], in which it was shown the 
flow-sound relationship changes substantially during sleep in 
OSA group. Figure 5 shows this reversed relationship during 
sleep and wakefulness of the two groups. On the other hand, 
Fig. 5 also shows the more variability among the non-OSA 
group. Given the very small population of this study, it is 
difficult to draw a general conclusion. However, one should 
not forget that even the non-OSA group were referred 
patients for PSG; they were also snorers although we 
analyzed sounds segments free of snoring sounds. 
Furthermore, anthropometric factors such as smoking history 
in particular would affect the airway structure and thus, the 
breathing sounds. To address such variability we definitely 
need data from a large population. 

Overall, the results of this study are encouraging to continue 
and investigate the observed patterns in a larger population.  

   
Table 1. The score of each extracted feature during sleep and wakefulness 

 
Feature p-value between sleep and 

wakefulness 

OSA Non-OSA 

Spectral Centroid  0.0766 0.4765 

Spectral Bandwidth 0.0035 0.1124 

Median 
bifrequency 

0.0823 0.1260 

Harmonic Mean of 
bispectrum 
coefficients 

 

0.0865 

 

0.2002 

Arithmetic Mean of 
bispectrum 
coefficients 

 

0.1016 

 

0.2129 

Harmonic Mean of 
real-bispectrum 

coefficients 

 

0.4113 

 

0.5433 

Arithmetic Mean of 
real-bispectrum 

coefficients 

 

0.4373 

 

0.2450 
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