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Abstract—This paper proposed a novel outlier detection 

method, named l1-regularized outlier isolation and regression 

(LOIRE), to examine torque-related transient patterns of in vivo 

muscle behavior from multimodal signals, including 

electromyography (EMG), mechanomyography (MMG) and 

ultrasonography (US), during isometric muscle contraction. 

Eight subjects performed isometric ramp contraction of knee up 

to 90% of the maximal voluntary contraction, and EMG, MMG 

and US were simultaneously recorded from the rectus femoris 

muscle. Five features, including two root mean square 

amplitudes from EMG and MMG, muscle cross sectional area, 

muscle thickness and width from US were extracted. Then, local 

polynomial regression was used to obtain the signal-to-torque 

relationships and their derivatives. By assuming the 

signal-to-torque functions are basically quadratic, the LOIRE 

method is applied to identify transient torque-related patterns of 

EMG, MMG and US features as outliers of the linear 

derivative-to-torque functions. The results show that the LOIRE 

method can effectively reveal transient patterns in the 

signal-to-torque relationships (for example, sudden changes 

around 20% MVC can be observed from all features), providing 

important information about in vivo muscle behavior.  

I. INTRODUCTION 

In vivo muscle behavior during contraction delivers 

important information about structure and function of 

muscles, and is a central topic in neuromuscular research. 

Some most commonly-used recording techniques developed 

to measure in vivo muscle behavior include electromyography 

(EMG) [1], mechanomyography (MMG) [2], and 

ultrasonography (US) [3]. The temporal and spectral 

characteristics of EMG and MMG, such as its amplitude and 

spectrum, have been extensively used to examine the motor 

control strategies [1, 2]. On the other hand, the morphological 

change of muscle can usually be obtained by US [4, 5]. Since 

US is noninvasive, real-time and easily accessible, it has been 

widely applied to measure in vivo muscle architecture under 

both static and dynamic muscle conditions.  
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Multimodal signals (EMG, MMG, or US) are normally 

recorded as time-series data, but it is often of greater 

advantage to represent these signals as functions of the torque. 

It is because the signal-to-torque relationship can provide 

useful information for understanding how muscle behaviors 

change with the torque output. Polynomial regression is most 

widely adopted for the estimation of such signal-to-torque 

relationship and the results obtained from polynomial 

regression have shown that EMG, MMG, and US exhibit 

different response patterns with respect to torque. However, 

polynomial regression is not flexible enough to describe 

highly nonlinear and transient relationships between 

EMG/MMG/US and torque because it is based on a specific 

functional form (e.g., linear or quadratic) for all observed 

data. Local polynomial regression (LPR) is recently 

introduced to present the continuously identified features of 

three modalities as smooth functions of torque values [6]. 

Importantly, LPR makes it possible to identify transient 

response patterns of muscles with the increase of torque from 

EMG/MMG/US-to-torque smooth functions. 

In this study, we proposed to use a novel outlier detection 

method, named l1-regularized outlier isolation and regression 

(LOIRE), to identify outliers in LPR-derived 

EMG/MMG/US-to-torque relationships, with the aim to 

examine transient torque-related patterns of EMG, MMG and 

US signals. We assume that the signal-to-torque functions are 

basically quadratic functions, and, thus, the first-order 

derivatives of the signal-to-torque functions (i.e., 

derivative-to-torque functions) are linear functions. We 

further assume that the majority of samples in the linear 

derivative-to-torque functions are contaminated with 

Gaussian distributed noise, and only a small portion of 

samples are largely deviated from the ordinary pattern (linear 

functions) and they can be regarded as transient patterns in the 

signal-to-torque functions. These transient patterns are 

represented as outliers in the linear derivative-to-torque 

functions and can be detected by the proposed outlier 

detection method. The new LOIRE method is based on l1 

relaxation and is developed for identifying outliers in a linear 

regression model contaminated with both Gaussian noise and 

Bernoulli error. The LOIRE method is flexible and efficient, 

especially when there are a large number of outlier points 

caused by abrupt changes in the data. Experimental results 

show that this new outlier detection method can effectively 

identify torque-related transient patterns in single-to-torque 

relationships during isometric muscle contraction. 
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II. EXPERIMENTS AND METHODS 

A. Signal Acquisition  

Multimodal measurements were taken in eight (five males 

and three females) healthy volunteers (age = 31.4 ± 5.7 years). 

The study was approved by the local ethics committee. The 

subject was seated with the right leg at a flexion angle of 90˚ 

on a test bench of an isokinetic dynamometer (Humac Norm 

Testing and Rehabilitation System, Computer Sports 

Medicine, Inc., MA, USA). The subject was required to put 

forth his/her maximal effort of isometric knee extension for a 

period of 6 s. In each test trial the subject was instructed to 

perform ramp contractions to produce torques increasing 

linearly from zero up to 90% MVC in 6 seconds. During each 

contraction, a template torque, serving as a target, and the 

output of the subject’s torque, were displayed simultaneously 

on a computer screen, which helped the subject to adjust his 

torque production to track the target torque in real-time. Three 

trials were repeated with a rest of 5 min between adjacent 

trials.  

The ultrasound images of the rectus femoris (RF) muscle 

were obtained by an ultrasonic scanner (EUB-8500, Hitachi 

Medical Corporation, Tokyo, Japan). The ultrasound probe 

was fixed by a custom-designed multi-degree adjustable 

bracket. The long axis of the probe was arranged 

perpendicularly to the long axis of the thigh on its superior 

aspect, 40% distally from the knee. The ultrasound image was 

digitized by a video capture card (NI PCI-1411, National 

Instruments Corporation, Austin, TX, USA) with a frame rate 

of 25 Hz and resolution of 0.15 mm. Two surface bipolar 

Ag-AgCl EMG electrodes (Axon System, Inc., NY, USA) 

were placed on the RF muscle belly parallel with the long axis 

of the muscle on both sides of ultrasound probe, and a 

reference EMG electrode was placed near the kneecap. The 

MMG signal was detected using an accelerometer 

(EGAS-FS-10-/V05, Measurement Specialties, Inc., France) 

fixed with two-sided tape. The EMG and MMG signals were 

amplified by a custom-designed amplifier with a gain of 2000, 

filtered separately by 10-400 Hz, 5-100 Hz band-pass analog 

filters, and digitized by a 12-bit data acquisition card 

(NI-DAQ 6024E, NI, Austin, TX, USA) with a sampling rate 

of 1 KHz. The isometric torque output from the dynamometer 

was also sampled by the NI-DAQ card in synchronization with 

the ultrasound image capture.  

B. Feature Extraction 

The EMG and MMG signals were segmented into 256-ms 

epochs. The center of each EMG/MMG epoch was aligned in 

time with the corresponding ultrasound image according to the 

timestamp, so that the epochs were registered to the image 

sequence in time domain. The root mean square (RMS) values 

of EMG and MMG were calculated for each epoch and 

expressed as a percentage of their maximal values at 90% 

MVC. Muscle dimensions were measured offline by in-house 

image processing program. An object tracking method, named 

constrained mutual information-based free-form deformation 

(C-MI-FFD), was used to automatically extract dynamic 

muscle boundary from the ultrasound image sequence [7]. For 

each trial, the first image in the sequence was selected as 

reference and the boundary of the RF muscle was outlined 

with smooth lines by the investigator. Then the C-MI-FFD 

method was applied to track the cross sectional area (CSA) 

boundaries in subsequent images. After getting the boundary, 

muscle thickness was measured as the greatest vertical 

distance between the anterior and posterior borders from the 

extracted boundary, and muscle width was measured at 50% 

of the vertical distance between the anterior and posterior 

borders in the boundary, perpendicular to the vertical 

measure. 

C. Local Polynomial Regression 

Local polynomial regression (LPR) [8, 9] is a flexible and 

efficient nonparametric regression method that is particularly 

effective for interpolation and smoothing of non-uniformly 

sampled data. Compared with polynomial regression that fits a 

certain functional form to all observed data, the LPR method 

is more data-driven and the regression functions are 

determined locally by windowed data. At any given point of 

the independent variable, the LPR method fits polynomials to 

a fraction of data (dependent variable) within a window 

centered at the point and having variable window bandwidth. 

The window bandwidth can be adaptively selected by an 

intersection of confidence intervals (ICI) technique [9] for the 

best bias-variable tradeoff of the LPR estimator. As a 

consequence, the LPR method can better capture the dynamic 

relationship and local information than the conventional 

polynomial regression. In this study, at each torque sample 

(uniformly distributed from 0 to 80% MVC with a step of 1% 

MVC, resulting in 81 torque samples), the LPR used a 

one-order polynomial (L=1) to fit one set of multimodal 

features and the local window was adaptively selected by the 

ICI method. The model order in LPR was set to 1 to avoid 

possible over-fitting. With the LPR and the ICI methods, the 

smooth functions of multimodal features and their first-order 

derivatives with respect to torque were estimated. 

Subsequently, we use a new outlier detection method to 

identify outliers from the derivative-to-feature functions for 

the inference of transient patterns of multimodal 

signal-to-torque relationships. 

D. The LOIRE Method 

In this section, we applied the LOIRE method recently 

proposed in [10, 11] to detect the transient torque-related 

patterns of muscle behavior. Suppose that the torque-related 

transient multimodal patterns follow the model: 

 y ax c e b     (1) 

where y is the samples of the first-order derivatives of feature 

with respect to torque, x is the torque samples,  a  (the 

regression coefficient) and c  (a constant) are hidden 

variables to be estimated, and e  and b  are Gaussian noise 

and Bernoulli error, respectively. The non-zero entries in b  

indicate the outlier points. Then the problem is how to 

calculate a  and c  from given samples  
1,...,

( , )i i i n
x y


, where 

xi and yi are the i-th torque level and the i-th first-order 

derivative of one EMG/MMG/US feature, respectively. 

The model (1) assumes that the transient patterns are caused 

by abrupt changes of muscle behavior and can be modelled as 
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Bernoulli error. Therefore, the problem can be formulated by 

the following optimization problem via maximum likelihood 

estimation:  
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and t  is a constraint parameter. In (2), we actually bounded 

the norm of estimated Gaussian noise by the parameter t , 

which is acceptable since large-magnitude noise occurs with a 

very small probability and can be regarded as outliers that will 

be presented in b.  

However, Eq. (2) is an NP-hard problem that is almost 

unsolvable. In most cases, (2) can be relaxed as the following 

formulation 
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Eq. (3) is a tractable problem and can be solved efficiently via 

convex optimization. Without loss of generality and for 

simplicity, we transform (3) to the following formulation via 

the Lagrange Dual theory [12]: 

 2

21
min bb

b
 Xαy  (4) 

where   is a penalized coefficient determined by t. In (4), 

without loss of generality, we suppose X is a full rank matrix 

(if not, singular value decomposition can be used to 

decompose matrix X to derive a full rank matrix). An efficient 

algorithm for (4) is given in Table 1.  

 
TABLE 1 

OUTLIER DETECTION ALGORITHM FOR (4) 

Given y and X 

Initialization: 
00, 0k b   

WHILE 
1 1|| ||k kb b    DO 

          1

1 ( )T T

k kX X X y b 

     

         
1 1.k ky y X    

                                                                 

         1k k     

 END WHILE  

 OUTPUT b   

The operator “ ” denotes a Hadamard product (i.e., if z x y , then 
iz , 

the i-th coordinate of vector z , equals to 
i ix y ). For the notation “

+[ ] ”, 

suppose  p q


 , we have =i ip q  if 0iq  , otherwise =0ip . The vector 

1  is a vector with a value of one at each entry. 

 

Due to page limitation, the convergence proof of the 

algorithm is omitted here. Interested readers can refer to 

[10,11] for analysis details. After the above outlier detection 

step, entries of yi with the corresponding are identified as 

outlier. In order to achieve higher accuracies for parameters a 

and c in (1), we can, with some theoretical supports from 

paper [10,11], use the classical Least Mean Squares/Minimum 

Mean Squares [13] regression on the cleaned data y with its 

detected outlier entries being removed. 

 In this paper, we applied the outlier detection model in (4) 

and the algorithm in Table 1 to identify outliers in the 

EMG/MMG/US-to-torque derivative functions, which are 

averaged across eight subjects. The detected outlier samples 

are presented as non-zero entries in the Bernoulli error b and 

are regarded as torque-related transient response patterns of 

this group of people.  

III. RESULTS 

The EMG, MMG and torque signals during one 

representative trial of one subject are shown in Figure 1. It can 

be clearly seen that both RMSEMG and RMSMMG are increasing 

functions of time, while torque almost linearly increases with 

respect to time.  

 
Figure 1.  The time courses of (a) EMG, (b) MMG, and (c) torque during a 

representative trial. The torque signal was overlaid onto the ramp template as 

it appeared for the subject during the trial. The RMSEMG and RMSMMG 

curves are also overlapped in the raw EMG/MMG curve. 

 

The dimensional changes of CSA, thickness and width of 

this trial are shown in Figure 2. We can see that all three 

features are highly nonlinear with respect to time and they 

provide complementary morphological information regarding 

the muscle architecture.  

 
Figure 2.  Dimensional changes of CSA, thickness and width in a 

representative US trial. These US features are automatically extracted by the 

C-MI-FFD method [7]. 

 1 1 1

1
1k k kb sign y y


  



 
  

 

4218



 

Figure 3 shows the LPR-derived smooth functions and 

derivative functions of five features as functions of the torque, 

which are all averaged from eight subjects. We can see that, at 

the group level, all these signal-to-torque relationships exhibit 

dynamic and transient patterns. The linear regression 

functions (which describe the overall relationship between 

feature derivatives and torque) and the transient patterns 

estimated by the LOIRE method are respectively indicated by 

dashed black lines and gray background in the bottom panel of 

Figure 3. Taking CSA as an example, we can see that the 

CSA-to-torque function has a negative quadratic coefficient 

and around 20% MVC there is a sudden decrease in the 

derivative-to-torque function of CSA, which means CSA 

rapidly decreases with torque around 20% MVC in a 

significantly different decreasing rate from that in other ranges 

of torque. Specifically, a sudden change around 20% MVC 

can be observed from all features, and is particularly 

pronounced for US features.     

IV. DISCUSSION AND CONCLUSION 

The relationship between muscle activities and generated 

torque during muscle contraction is an important and 

challenging topic. The most common approach to characterize 

the relationship is polynomial regression, but polynomial 

regression is not flexible enough to describe transient patterns 

in the whole torque spectrum. This paper introduced a new 

outlier detection method, LOIRE, to detect transient patterns 

of in vivo muscle behavior during isometric contraction. 

Based on the assumption that the overall relationship between 

muscles signals and torque is quadratic (so the overall 

derivative-to-torque relationship is linear), the proposed 

outlier detection method is used on derivative-to-torque 

functions, which are estimated using local polynomial 

regression, to detect outliers as transient patterns of muscle. 

For the first time, dominant transient patterns around 20% 

MVC in all multimodal muscle features are quantitatively 

identified, though this critical point of 20% MVC has been 

reported in literature.  The LOIRE method (as well as the 

whole data analysis pipeline) can provide novel and more 

complete information of muscle contraction, and is potentially 

a useful tool for the muscle assessment in clinical applications. 
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Figure 3.  LPR on five parameters as functions of torque. Top: smooth functions; bottom: first-order derivative functions. The bottom panel also indicates the 

transient patterns detected by the proposed LOIRE method with gray background.The bashed black lines are the linear regression functions (determiend by a 

and c) estimated by the LOIRE method.  
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