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Abstract— We report on classification of phones and phonetic
features from facial electromyographic (EMG) data, within the
context of our EMG-based Silent Speech interface. In this paper
we show that a Deep Neural Network can be used to perform
this classification task, yielding a significant improvement over
conventional Gaussian Mixture models. Our central contribu-
tion is the visualization of patterns which are learned by the
neural network. With increasing network depth, these patterns
represent more and more intricate electromyographic activity.

I. INTRODUCTION
During the past decade, novel speech processing devices

called Silent Speech Interfaces (SSI) [1] have been gaining
more and more popularity. SSIs enable speech commu-
nication between humans and speech-based man-machine
interaction even when an acoustic speech signal is not avail-
able. Application areas include confidential and undisturbing
communication in public places, as well as the creation of
assistive devices for speech-impaired persons.

This study is based on our Silent Speech interface using
surface electromyography (EMG) [2], where the electrical
potentials which emerge in the articulatory muscles during
speaking are captured by surface electrodes. The system has
been under development since 2005 and by now allows Hid-
den Markov Model-based recognition of continuous speech
[3] with vocabularies of up to 2100 words [4], for both
audibly spoken and silently mouthed speech [5].

Despite these successes, there exists only limited knowl-
edge about what exactly the recognition system learns from
its training data. One way to tackle this question from the
classifier perspective is to forego the rather complex Hidden
Markov Model framework which is used for continuous
speech recognition and analyze recognition performance at
the level of single frames. We follow our prior study [6] in
assuming that each frame is uniquely assigned to a phone or
phonetic feature (a phonetic property of a phone, see section
III-A), and we evaluate the performance and characteristics
of a classifier which learns this assignment.

The contribution of this study is the application of deep
neural networks (DNN) for this frame-based classification
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Fig. 1. EMG array positioning

task. We show that for phone classification, we achieve sig-
nificant improvements over a baseline system using Gaussian
Mixture Models (GMM), and we show in particular that we
can visually interpret the activation patterns of the hidden
nodes of the DNN in the input feature domain, leading
to a better understanding about what constitutes discernible
activity in the complex facial EMG activity generated during
speaking.

Our study is rooted in ongoing research on Silent Speech
interfaces, see [1] for an overview. The EMG approach is
rather well-developed and is being used to investigate a
variety of specific challenges mostly related to applied Silent
Speech recognition, for example recognition of disordered
speech [7], language-dependent challenges like nasality [8]
or tonality [9], as well as direct conversion from EMG signals
to acoustics [10], with the purpose of generating natural
intonation contours [11]. This study, with its more theoretical
orientation, well complements these research topics.

II. DATA CORPUS

Our corpus consists of 25 sessions from 20 speakers, each
comprising 200 read English-language utterances spoken in
normal, audible speech. 11 sessions from 9 speakers were
used as a development set for parameter tuning, the 14
sessions from the remaining 11 speakers were set aside for
evaluation. As in [6], silent speech was not used since in this
case obtaining phone-level alignments is problematic [5].

Data was taken from the current version of our EMG-Array
corpus [2]. The multi-channel EMG amplifier EMG-USB2
(OT Bioelettronica, Italy) was used together with two EMG
arrays, see figure 1: A chin array comprising a single row of
8 electrodes with 5 mm inter-electrode distance (IED), and a
cheek array with 4×8 electrodes with 10 mm IED. This data
was recorded in bipolar fashion, where the difference of two
adjacent channels is taken to reduce common mode artifacts,
thus we finally got 35 (5 · 7) EMG channels. Sampling was
performed at 2048Hz.
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TABLE I
DATA CORPUS

Development Corpus Evaluation Corpus
Avg session
length

# ses-
sions

Avg session
length

# ses-
sions

Training 591 sec.
11

519 sec.
14Cross-Val. 85 sec. 76 sec.

Test 77 sec. 68 sec.
Total amount of data (development): 138 minutes
Total amount of data (evaluation): 155 minutes

Acoustic data was simultaneously recorded with a standard
close-talking microphone and synchronized to the EMG data
with a hardware marker signal. According to [12], the EMG
signal was delayed by 50ms to better match the audio signal.
Phone-level alignments of the EMG signal, a prerequisite
for performing our study, were then computed from the
synchronized acoustic signal, as in [12]. We always consider
these acoustic time alignments as ground truth.

Both development and evaluation sessions were subdi-
vided as follows: 160 utterances were used as training set,
20 utterances were used for cross-validation (CV), and the
remaining 20 utterances were used for testing the classifiers.
Table I gives an overview of our data corpus.

III. EXPERIMENTAL SETUP

A. Classification of Phones and Phonetic Features

We evaluate seven different frame-based classifiers:

• First, we consider classification of phones. We partition
our data into 45 phone classes; this is our standard for
continuous speech recognition. Note that the amount of
samples per phone varies greatly (for example, 6 versus
600 samples).

• Second, we perform classification of phonetic features
(PF). The PFs were chosen along the main axes deter-
mining an (English) phone:

– For consonants: Position (8 classes) and Manner (5
classes) of articulation, and Voicing (2 classes)

– For vowels: Frontness (4 classes), Openness (4
classes), and (lip) Rounding (2 classes). For front-
ness and openness, diphthongs were placed in a
separate class.

For the classification of consonant PFs, all vowel frames
are disregarded in both training and testing, and analo-
gously, for vowel PFs consonant frames are ignored.

In all cases, silence which occurs at the beginning or end of
utterances is ignored. The classifiers are always trained and
tested on data from the same recording session. We measure
the balanced accuracy or our recognizers: For each class, we
separately compute the percentage of correctly recognized
frames, then we average over all class-wise accuracies. Thus
we compensate for the different number of frames per class,
which implies that if there are n classes to be discriminated,
the chance level of recognition is 1/n.

B. GMM baseline system

The baseline for this study is the classifier presented in
[6], which is based on Gaussian mixture models (GMM).
However we adapted the EMG feature extraction to account
for the purpose of this study, i.e. visualization and interpre-
tation of learned EMG patterns1. We chose the logarithmic
power as an easily interpretable feature: The EMG signal
is subdivided into frames with a size of 27ms and a shift
of 10ms, and for each frame, we compute the power and
take the logarithm. We combine the log-power features for
all 35 channels and finally stack adjacent frames with a
context width of 5 (-5 . . . 5), so that we get a feature size of
11 · 35 = 385. The features are then z-normalized.

Finally we compute a Linear Discriminant Analysis (LDA)
transformation for dimensionality reduction. Since in our
previous work, we observed that the optimal number of
dimensions after LDA varies with the recording session
and with the task at hand, we considered several parameter
settings for the LDA transformation, namely, we experi-
mented with 12, 22, or 32 retained LDA components, with
an optional PCA step before LDA to reduce sparsity [2],
retaining 900 dimensions after PCA. From these 6 settings,
for each task we chose the best-performing one as our
baseline, based on the result on the development set.

C. Training Deep Neural Networks

The key method which we apply in this study is training a
Deep Neural Network (DNN), i.e. a network with relatively
many hidden layers, on the input EMG features. We use the
stacked 385-component log-power feature defined in section
III-B as network input; since it is not needed here, we do
not apply LDA. Then we use three logistic hidden layers,
with varying sizes experimentally tuned on the development
corpus, and a final softmax classification layer having as
many nodes as there were classes to be distinguished.

For training we follow the method of Hinton et al. [13]:
We first consider only the logistic hidden layers, on which we
perform unsupervised greedy layer-wise pretraining with the
Restricted Boltzmann machine (RBM) algorithm. We assume
the input data to be Gaussian distributed and modify the
RBM algorithm to get a Gaussian-Bernoulli RBM [14]. Our
code is based on the original scripts by Hinton [15].

After this pretraining, we add the discriminative softmax
layer and perform standard backpropagation training on the
resulting pre-initialized network. Parameters for this step
include a minibatch size of 1000 frames, a maximum of 300
epochs, and a linearly decaying learning rate (10−4 . . . 10−5).
After each epoch, we compute the balanced accuracy on the
cross-validation data, the network weights which are used for
classifying the test data are chosen to maximize the balanced
accuracy on the cross-validation set.

IV. CLASSIFICATION RESULTS
Figure 2 charts the recognition accuracies for our different

experiments, averaged over sessions of the development or

1Also note that the PF classes in [6] were defined slightly differently, so
that those results are not directly comparable to the ones obtained here.
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Fig. 2. Average accuracies of the different systems on the test utterances of the development and evaluation corpus, in percent.

evaluation corpus, respectively. For better readability we only
display results on the test sentences. The results on the CV
set are not fundamentally different.

The key observation is that the DNN training yields
accuracy improvements in almost all cases, only for the
classification of the manner of articulation, GMMs perform
better on the evaluation corpus. The improvement is largest
for phones (more than 20% relative on the evaluation corpus),
it is also highly significant (one-sided t-test for paired sam-
ples, p = 2.8 ·10−6). The relative improvements for phonetic
features are lower (however the baseline accuracy is higher),
and the t-test frequently does not prove significance.

With the exception of lip rounding, the vowel features
achieve relatively low accuracies (typically around 40%, at
25% chance level), which might show that these features,
which only differ slightly in articulatory movements, are
generally hard to recognize from EMG data. Yet, English
vowel pronunciation allows a lot of variation (particularly
with both native and non-native English speakers in our
corpus), so that only limited accuracy should be expected
in principle. The manner of articulation is harder to classify
than the position of articulation, no matter which method is
used; this confirms results from [6].

This result supports using DNNs as a method for phone/PF
classification from EMG data (suggesting subsequent usage
for continuous EMG-based speech recognition as well). For
the purpose of this paper, we can expect our DNN pattern
visualization to yield reasonable results.

V. VISUALIZATION OF HIDDEN NODES

Assume that we have finished training a multi-layer neural
network. Then we can use this network for classification by
“forward propagating” a test pattern x through the network,
computing node activations on the way. Clearly, for any node
N , its activation is a function of x: N = N(x). The weights
do no more appear as parameters, since they are now fixed.

Since all functions used in the neural network are differ-
entiable, so is N(x). For understanding the behavior of this
node, it is therefore possible to maximize N(x) over x:

x̂ = argmax
x

N(x). (1)

This method, proposed by Erhan et al. [16], yields the
maximum activation pattern x̂ for the given node N . Here
it is necessary to place a norm constraint on x, we thus
require ||x||2 = 1. The constrained optimization in equation
1 is performed with the Matlab fmincon function.

For display purposes, we chose a small DNN trained for
phone classification, with hidden layers of sizes 30, 20,
and 30. Figure 3 displays several typical resulting patterns
for randomly chosen nodes from the three hidden layers.
Each row contains one single maximum activation pattern,
arranged to show the shapes of the two EMG arrays (1× 7
and 4× 7). The 11 plots per row stem from the 11 (2 · 5 +
1) context frames which form the input feature vector (see
section III-B), thus each row contains the time evolution of
a maximum activation pattern. Also note that since we use
a log-power feature, activation patterns directly correspond
to EMG energy levels. We show sample patterns for session
2 of speaker 2 (development corpus), these patterns repeat
over and over for a variety of speakers and sessions.

Subfigure 1), on the left-hand side, contains activation
patterns for the first hidden layer, which directly connects to
the input EMG feature. We see that some nodes (in particular,
the ones in rows a to c) exhibit maximum activation patterns
which extract localized sources of EMG activity (in the
case of row a, the strongest activation is in the small
chin array). These patterns strongly resemble those in [17,
fig. 2], where Independent Component Analysis (without
considering context information) was used to extract EMG
activity sources. The activation patterns in rows d to f are
less clear, yet such patterns are also frequently observed.
Totally smooth patterns are not to be expected, since the
raw EMG signal is known to contain artifacts, even including
disconnected electrodes which yield channel features which
the network must completely ignore.

Subfigures 2) and 3) display patterns from the deeper
layers 2 and 3 of the network, respectively. Again, one can
see that patterns emerge which correspond to evolving EMG
activity, this is observed best in rows 2a, 2b, 3a, and 3b. We
made the interesting observation that these patterns tend to
become more intricate than in the first layer, although such
a statement is somewhat hard to quantify.

The observed EMG patterns are quite similar for phone
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Fig. 3. Visualization of (array-shaped) input features learned by nodes in the hidden layers 1, 2, and 3. See text for details.

and phonetic feature networks. Finally, we remark that the
30-20-30 network which we used for the above investigation
is not the best one we can come up with: Larger network
sizes, e.g. in the range 160-80-160, typically yield better
results in both the phone and PF classification tasks. Figure
2 always displays DNN accuracies for the optimal network
size, as determined on the development set. When we
compare the maximum activation patterns for smaller and
larger networks, we typically observe that irregular patterns,
like the one in figure 3, row 1f), emerge with increasing
frequency. It must be concluded that such patterns do contain
important information for classification, yet the fact that
small systems create more regular patterns indicates that
these regular patterns are the most important ones.

VI. CONCLUSION

In this study we showed that Deep Neural Networks
may be used for extracting and visualizing distinctive EMG
features which play a role in the classification process. This
result is a stepping stone towards improved understand-
ing of the classification which occurs in our EMG-based
silent speech recognizer, since it offers a way to extract
EMG activities which hint at the difference between certain
phones, or present and absent phonetic features. Future work
will include an extended analysis of the intra-layer activity
propagation in the DNN, with the goal of extracting a
set of features which directly represent certain articulatory
activities, and, in turn, can be linked to phonetic features.
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