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Abstract— Human hands are the most dexterous of human
limbs and hand gestures play an important role in non-verbal
communication. Underlying electromyograms associated with
hand gestures provide a wealth of information based on which
varying hand gestures can be recognized. This paper develops
an inter-individual hand gesture recognition model based on
Hidden Markov models that receives surface electromyography
(sEMG) signals as inputs and predicts a corresponding hand
gesture. The developed recognition model is tested with a
dataset of 10 various hand gestures performed by 25 subjects in
a leave-one-subject-out cross validation and an inter-individual
recognition rate of 79% was achieved. The promising recogni-
tion rate demonstrates the efficacy of the proposed approach
for discriminating between gesture-specific sEMG signals and
could inform the design of sEMG-controlled prostheses and
assistive devices.

I. INTRODUCTION

Conventionally, the work on automatic human gesture
recognition is based on observable manifestations of the
gestures represented in terms of kinematic trajectories, which
are captured by video cameras and/or optical motion capture
systems. Advancements in physiological sensing technology
have enabled access to underlying electrical muscular activ-
ities (surface Electromyography (sEMG)) associated with a
displayed gesture. Therefore, sEMG provides an alternative
source for automatic recognition of bodily movements in-
cluding hand gestures. The automatic recognition of hand
gestures based on sEMG signals is a promising approach for
controlling prostheses and in rehabilitation applications (e.g.,
[1]–[4]).

The majority of the work on sEMG-based gesture recog-
nition to date is done based on user-specific training of
the classifier (e.g., [2], [5]), and/or requiring at least one
training input from every new user [6], [7]. Inter-individual
recognition of hand gestures from sEMG signals is difficult
due to the noisy nature of sEMG signals, differences in
sEMG sensor placement and contact conditions, and inter-
individual differences in performing a gesture. Furthermore,
sEMG signals belong to the class of sequential observations
and therefore, there are phase and length variations between
different sEMG patterns associated with a gesture, which
impede the application of feature-based discriminative tech-
niques. To address the first problem (noisiness of sEMG), in
this work, the sEMG signals are preprocessed to obtain their
smoothed shape (envelopes). To account for the interpersonal
differences, a hidden Markov model (HMM) with a mixture
of Gaussian outputs is proposed to enable encoding gestures
with a multi-modal distribution in sEMG space. In such a
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modeling, exemplars from a gesture belonging to different
modes (kinematic or kinetic) of that gesture are assigned
to distinct mixtures. Another advantage of HMMs is their
robustness to phase and/or length differences, eliminating
the need for length normalization and landmark alignment
for the sEMG signals. The proposed approach constructs
gesture-specific HMM models and uses them to perform
maximum likelihood recognition for a given gesture. The
performance of the proposed approach is evaluated with
leave-one-subject-out cross validation using a dataset of
various hand gestures performed by 25 different subjects.

II. METHODOLOGY

The raw sEMG signals are noisy and contaminated by en-
vironmental, measurement, and motion artifacts. The sEMG
signals also include significant spatial-temporal variability,
which impedes feature-based discriminative analysis due to
variable-length and spatially-unaligned signals. In addition,
there are subject-specific sources of variabilities (e.g., sub-
cutaneous fat, muscle fibre composition, amount of hair [8])
in sEMG signals that need to be accounted for to enable
inter-individual recognition.

A. Preprocessing

Signal envelopes are first generated by: 1) centering raw
sEMG signals to remove any DC offset in the signals, 2)
rectifying the centered signals (taking the absolute value of
the signals), 3) low-pass filtering of the centered and rectified
signals [9](see Fig. 1).

Next, the resulting sEMG envelopes are segmented to
extract the active region of the signals. In this work, an
adaptive segmentation approach is applied, which computes
an amplitude threshold for each combination of sEMG
channel, gesture, and subject. The amplitude threshold for
cth channel in the kth gesture performed by sth subject is
computed as the ratio of the maximum of the sEMG signal
in the cth channel to the sth subject rest gesture median in
the cth channel. Therefore, the segmentation requires a rest
gesture for each subject. The resulting thresholds are then
used to segment the active regions of the sEMG signals.

B. HMM-based gesture modeling and recognition

HMM models a sequential observation as a stochastic
process whose dynamics are described by a discrete hidden
state variable. The hidden state varies between N hidden
state values based on a state transition matrix A of size
N ×N . The observation variables are described by a vector
of size C (C represents the number of sEMG channels in our
case). The distribution of the observations for each hidden
state is modeled as a mixture of M multivariate Gaussians
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Fig. 1. An example of sEMG envelopes.

and is denoted as B. For a gesture O of length T , the
observation probability for the ith HMM state is defined as

bi(Ot) =
M∑
j=1

wijN(Ot, µij ,Σij) =

M∑
j=1

wij
1

(2π)C/2|Σij |1/2
e−1/2(Ot−µij)T Σ−1

ij (Ot−µij), (1)

where Ot is the gesture at time t, and wij , µij , and Σij are
the weight, mean, and covariance of the jth C-dimensional
Gaussian at state i. Furthermore, there is an initial state
probability πi|Ni=1 for each hidden state. Therefore, an HMM
model λ consists of λ(A,B, π). Efficient algorithms exist
for estimating the model parameters A,B, and π (e.g., the
Baum-Welch algorithm, an expectation-maximization algo-
rithm) and evaluating the likelihood that a new observation
was generated from the model (e.g., the forward algorithm).
A detailed review of HMMs can be found in [10].

In this work, an HMM with a mixture of Gaussian outputs
is trained to encode sEMG signals associated with each hand
gesture (gesture-specific HMM). Different individuals might
perform a gesture differently. These differences could be the
result of kinematic differences in performing a gesture or
individual differences in muscle recruitment. Furthermore,
different individuals might exert a different amount of force
in performing a hand gesture (kinetic differences e.g., a weak
fist versus a strong fist), which might result in different
sEMG patterns associated with a gesture. The mixture of
Gaussian outputs used in the gesture-specific HMMs allows
for encoding different modes of a gesture in a single HMM;
observations belonging to different modes of a gesture popu-
late distinct Gaussians at each hidden state in the associated
HMM.

The trained gesture-specific HMMs are then used to per-
form maximum-likelihood classification (ML) of the ges-
tures. This is done by computing the likelihood that a testing
gesture O is generated by the trained HMMs (λk, k =
1, . . . ,K, for K gestures) and classifying the testing gesture
as belonging to the gesture class with the highest likelihood
(arg max

1≤k≤K
P (O|λk)).

III. EXPERIMENTAL SETUP

The performance of the proposed recognition approach
is evaluated with leave-one-subject-out cross-validation
(LOSOCV). In each fold of LOSOCV, a subject is left
out (testing subject) and the models are trained using the
remaining subjects (training subjects) and then, the trained
models are tested using the testing subject.

A. Dataset

A prototype device from Thalmic Inc.1 containing 8 sEMG
sensors was used to capture the sEMG signals from the
surface of the forearm of 25 subjects, while performing a set
of 21 hand gestures2. The sEMG sensors are arranged side-
by-side along an armband that wraps around the subject’s
forearm, so that there is no specific assignment between a
particular sEMG sensor and a muscle or muscle group. The
subjects were asked to display each gesture within 2 seconds
after an audio cue was played. Five trials of each gesture
were collected from each subject.

B. HMM Initialization and model selection

To reduce subject-specific variabilities and enhance inter-
individual recognition, the signal envelopes for a gesture
performed by a subject are normalized by the maximum of
all trials of the gesture by that subject. Since all the gestures
start from a known pose (resting position), the hidden state
sequence for the HMMs always starts at state 1; hence, the
hidden state priors: πi = 1 for i = 1, and πi = 0, otherwise.

To initialize the training process, the signal envelopes are
divided into N (number of hidden states) equal segments,
and k-means clustering is run within each segment to identify
M clusters (M mixtures). Then, the means and covariances
of the identified clusters within each segment (hidden state)
are used as the initial means and covariances of the output
mixture of Gaussians associated with that hidden state. Mod-
els with full and diagonal covariances at output Gaussians are
tested. In each segment, a mixture weight is initialized as the
ratio of data points in the cluster to the total number of data
points in that segment. We have tested models with left-to-
right and full transition matrices (ergodic models) and found
that left-to-right models perform better on average. This is
due to the progressing nature of the gestures from their start
points to end points without cyclic transitions.

The choice of HMM parameters, particularly the number
of mixtures, is based on the dataset to be modeled, and
therefore must be experimentally selected. The presented
recognition approach is therefore suitable for generalization
as the number of mixtures can be adapted based on the data.
In this work, the best configuration of the HMMs in terms
of number of states and mixtures is selected to optimize
LOSOCV testing gesture ML recognition.

1Thalmic Labs, www.thalmic.com
2Rest, fist, paddle in, paddle out, snap, spider man, gun, thumb and index

finger tap, thumb and middle finger tap, thumb and ring finger tap, thumb
and pinky finger tap, point with index, point with index and middle, point
with index-middle and ring, thumbs up, talking hand, thumb flick, index
finger flick, middle finger flick, ring finger flick, pinky finger flick.

4197



IV. RESULTS AND DISCUSSION

The best HMM configuration is a left-to-right HMM with
seven states and five mixtures with diagonal covariance for
Gaussian outputs and results in a LOSOCV recognition
rate of 49% ± 6%3. The recognition rate is above chance
(4.8%) indicating that the proposed approach is capable of
distinguishing gestures based on their sEMG. However, we
observed that some gestures are better discriminated than
others. For instance, there is a large number of confusions
between similar gestures (e.g., pointing with index and
middle versus pointing with index, middle and ring). In
addition to confusion between kinematically similar gestures,
there exist confusions between kinetically similar gestures
(gestures performed with a similar amount of force exerted).
For instance, a strong pointing gesture or a thumb up gesture
have a high chance of confusion with fist gestures due to the
fist-like motion of fingers not involved in the pointing or
thumb up. In addition, subject-specific differences are more
apparent in some gestures than others (e.g., snap), which
impede the inter-individual recognition of these gestures.
In general, we observed that gestures with unconstrained
hand fingers (e.g., thumb in a gun gesture) are more prone
to misclassification. This is because each subject tends to
recruit the unconstrained fingers differently, which results in
significantly different sEMG patterns for different subjects.

To further explore the efficacy of sEMG for hand ges-
ture recognition, we constructed three reduced gesture sets
consisting of gestures with a minimum of 45% LOSOCV
recognition rate in the test on the full gesture-set. Tables I,
II, and III show confusion matrices for the recognition of 4
gestures, 6 gestures, and 10 gestures, respectively, using the
proposed approach.

TABLE I
LOSOCV TESTING CONFUSION MATRIX (%) AND INTER-INDIVIDUAL

RECOGNITION VARIANCE FOR 4 GESTURES.
Fist P-in P-out T-R Tap

Fist 96±1 3 0 1
P-in 5 94±3 0 1
P-out 3 0 97±1 0
T-R Tap 14 7 3 76±13

P-in/out: paddle in/out, T-R Tap: Thumb-Ring tap.

TABLE II
LOSOCV CONFUSION MATRIX (%) AND INTER-INDIVIDUAL

RECOGNITION VARIANCE FOR 6 GESTURES.
Rest Fist P-in P-out Spider T-R tap

Rest 99±0 0 0 0 0 1
Fist 0 94±3 3 0 2 1
P in 0 4 90±4 0 6 0
P out 0 2 0 95±2 3 0
Spider 0 3 7 5 67±10 19
T-R Tap 0 13 7 3 15 62±16

P-in/out: paddle in/out, Spider: Spider man, T-R Tap: Thumb-Ring tap.

LOSOCV recognition rates of 79%, 85% and 91% were
achieved on the gesture sets with 10, 6, and 4 gestures,
respectively. These LOSOCV recognition rates are high and
demonstrate the suitability of the proposed approach for

3We omit the confusion matrix for the full gesture-set due to limited
space.

inter-individual recognition of hand gestures. In general,
there are gestures which are better recognized than others,
indicating their distinct sEMG patterns that remain consistent
between different subjects (e.g., paddle out). However, the
results from the reduced-set experiment also show similar
recognition deficiencies as those observed in the full-set
experiment: 1) confusion between similar gestures (e.g.,
thumbs up and fist in Table III), and 2) low recognition rates
for gestures with unconstrained fingers (e.g., thumb-ring tap
in Tables I and II). We have also observed that gestures
with lower LOSOCV recognition rates have higher LOSOCV
recognition variance, which could indicate a higher degree of
inter-individual differences or a higher degree of variability
in the gesture.

We hypothesize that there are within-subject variabilities
between different trials of a single gesture. To test this
hypothesis, an additional 10 trials for all the gestures in the
dataset were collected for one subject and the performance
of the proposed approach in discriminating between gestures
from the subject is tested using stratified 10-fold cross vali-
dation (10-FCV: equal proportions of gestures are presented
in the training set in each fold). An HMM model with seven
states and three mixtures was selected using cross validation
to optimize within-subject recognition rates. Table IV shows
the within-subject confusion matrix for a set of 5 gestures.

TABLE IV
10FCV WITHIN-SUBJECT CONFUSION MATRIX (%)

Fist P-in P-out Spider Gun
Fist 80 0 0 10 10
P-in 20 70 0 10 0
P-out 0 0 90 0 10
Spider 10 0 0 90 0
Gun 0 0 0 0 100

P-in/out: paddle in/out, Spider: Spider man, T-R Tap: Thumb-Ring tap.

As can be seen from Table IV, while some gestures
are easily recognized (e.g., Gun), there are within-subject
confusions. These confusions might stem from two sources:
1) within-gesture variabilities, and 2) between-gesture simi-
larities. We hypothesize that a careful selection of the number
of mixtures of Gaussians in a gesture-specific HMM can
address the first source of variability, as each mixture models
a variation of the gesture. To test this hypothesis, we have
increased the number of mixtures for fist and paddle-in to
4 and 5, respectively. The results show improvements in
recognition of these gestures (fist: 90%, and paddle-in: 80%).
However, a further increase in the number of mixtures did
not improve the recognition. Therefore, it is important to
tune the number of mixtures for each gesture separately for
optimized recognition. With regard to the second source of
variability, a visual-inspection of the sEMG signals for the
misclassified gestures revealed between-gesture similarities
(for example, see Fig. 2). The between-gesture similarities
impede sEMG-based recognition of the gestures as there will
be conflicts between similar gestures.

V. CONCLUSIONS AND FUTURE DIRECTIONS

An sEMG-based hand gesture recognition approach is
presented that encodes gesture-specific sEMG signals in an
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TABLE III
LOSOCV CONFUSION MATRIX (%) AND INTER-INDIVIDUAL RECOGNITION VARIANCE FOR 10 GESTURES.

Rest Fist P-in P-out Snap T-I tap T-P tap Point I M Thumbs Up Thumb Flick
Rest 99±0 0 0 0 0 0 0 0 0 1
Fist 0 73±13 0 0 7 0 1 0 19 1
P-In 0 3 88±6 0 3 0 0 1 5 0
P-Out 0 2 0 92±3 1 4 0 0 1 2
Snap 0 1 0 0 86±9 0 3 0 0 10
T-I tap 0 0 0 5 2 75±12 9 3 0 6
T-P tap 0 0 0 2 2 6 66±15 8 13 2
Point I M 0 0 0 1 1 5 8 74±15 5 7
Thumbs Up 0 14 5 0 2 0 4 2 64±14 10
Thumb Flick 0 2 1 1 1 9 2 2 9 73±12

P-in/out: paddle in/out, T-I/P Tap: Thumb-Index/Pinky tap, Point I M: point with index and middle fingers.

Fig. 2. An example of between-gesture similarities. A fist gesture
misclassified as gun (top), a typical gun gesture (bottom). Each color-coded
line in these figures corresponds to 1 of 8 sEMG channels.

HMM model with a mixture of Gaussian outputs. The mix-
ture of Gaussian outputs allows for encoding kinematically
or kinetically dissimilar sEMGs associated with a gesture in
a single HMM. The proposed recognition approach is tested
with leave-one-subject-out cross validation and a dataset of
various hand gestures performed by 25 subjects. Recognition
rates of 79%, 85%, 91% were achieved for gesture sets with
10, 6, and 4 gestures, respectively. The resulting LOSOCV
rates are promising and demonstrate the suitability of the
proposed approach for inter-individual gesture recognition
based on sEMG.

There are gestures that are more difficult to recognize from
sEMG signals and are confused with one another due to inter-
individual differences (e.g. a gun with thumb up and a gun
with thumb down). We hypothesize that gestures involving
all the fingers or those in which motions of all the fingers
are constrained have a better chance to be recognized. We
will further explore this hypothesis in our future experiments.
We have also found within-subject differences in performing
a gesture. A careful tuning of the number of Gaussian

outputs enables modeling the within-gesture variabilities.
In the future, we will investigate a systematic approach
for selecting a proper number of Gaussian outputs. There
were also confusions between kinematically or kinetically
similar gestures. The between-gesture similarities and within-
subject variabilities along with inter-individual variabilities
make the task of automatic gesture recognition based on
sEMG signals a challenging one. Therefore, in developing an
sEMG-based recognition model that can be used to control
assistive devices and/or prosthetic limbs, care should be taken
in choosing the gesture set. In particular, for prostheses appli-
cation, a set of non-conflicting gestures (dissimilar gestures
in sEMG space) should be used. Finally, we hypothesize that
a more anatomically-driven sEMG sensor placement could
help recognition of the hand gestures, but may impede device
usability due to the need for careful positioning.
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