
  

 

Abstract— Several research groups have developed 

automated sleep-wakefulness classifiers for night wrist 

actigraphic (ACT) data. These classifiers tend to be 

unbalanced, with a tendency to overestimate the detection of 

sleep, at the expense of poorer detection of wakefulness. The 

reason for this is that the measure of success in previous works 

was the maximization of the overall accuracy, disregarding the 

balance between sensitivity and specificity. The databases were 

usually sleep recordings, hence the over-representation of sleep 

samples. 

In this work an Artificial Neural Network (ANN), sleep-

wakefulness classifier is presented. ACT data was collected 

every minute. An 11-min moving window was used as 

observing frame for data analysis, as applied in previous sleep 

ACT studies. However, our feature set adds new variables such 

as the time of the day, the median and the median absolute 

deviation. Sleep and Wakefulness data were balanced to 

improve the system training. A comparison with previous 

studies can still be done, by choosing the point in the ROC 

curve associated with the corresponding data balance.  

Our results are compared with a polysomnogram-based 

hypnogram as golden standard, rendering an accuracy of 

92.8%, a sensitivity of 97.6% and a specificity of 73.4%. 

Geometric mean between sensitivity and specificity is 84.9%. 

I. INTRODUCTION 

Several studies describe ACT applications. A continuous 
increase in the number of publication focused in sleep 
medicine has been reported [1] with promising results. In the 
specific field that involves this work, Tryon et al. [2] indicate 
that Polysomnography (PSG) and ACT focus on different 
steps in the process of falling asleep, which may explain, at 
least in part, why none of the studies in sleep/wakefulness 
classification based on ACT data could achieve a perfect 
match between their markings and those of the PSG in the 
exact determination of sleep onset. On the other hand, this 
may be a good opportunity for a learning machine to identify 
previously unknown relations between PSG and ACT data 
based on context information. 

Different research groups that applied ACT in sleep, such 
as [1] and [3], pointed to the fact that most of previous 
studies overestimated the sleep state because of the nature of 
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the data, biased towards sleep data. In a nighttime PSG 
recording, which serves as the base for ACT state 
classification, 80%-90% of the epochs are marked as sleep, 
which means that a classifier focused on sleep state detection 
will obtain a higher overall accuracy. To offset this situation, 
Domingues et al. [3] proposed using the geometrical mean 
(G-mean) between sensitivity and specificity as a classifier 
performance index, because it has a higher penalization for 
high sensitivity-low specificity cases than the sum or 
arithmetic mean. 

Cole et al. [4] introduced 1-min frequency data 
acquisition in ACT and proposed an algorithm that classified 
looking at an 11-min window that included the five previous 
samples and the five following samples of the presently 
observed minute, and linear combinations of these activity 
values. Sadeh et al. [5] also used the 11-min window and 
improved previous results extracting several features from it, 
and selected them using Stepwise Discriminant Analysis. 
Domingues et al. [3] applied a much higher ACT sample rate, 
which allowed them to introduce the notion of “purposeless 
movements”, a statistical methodology to find differences 
between movements in sleep and wakefulness. This is hardly 
feasible at a 1-min frequency data acquisition rate. Table I 
shows compared results of these studies. In this paper we 
compare Sadeh’s classifier, which is the best among previous 
studies, with our system.  

Other studies showed the development of 
sleep/wakefulness classifier algorithms associated to groups 
with sleep or psychiatric disorders [6], [7] or infants [8], [9].  

II. METHODS 

A. Data 

Both ACT and PSG data were recorded simultaneously at 
the Sleep and Functional Neurobiology Lab, INTA, 
Universidad de Chile.  

ACT data was recorded at one-minute rate. The Actigraph 
was a Minimitter Actiwatch 64 in crosses-by-zero mode. 
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TABLE I.  RESULTS OF PREVIOUS ACT SLEEP-WAKEFULNESS 

STUDIES 

Author 
Sens 

% 

Spec 

% 

Acc 

% 

G-mean 

% 

Sleep 

scored by 

PSG % 

Sadeh et al [5] 97.9 74.3 92.6 85.3 77.4 

Domingues et al 

[3] 

75.6 81.6 77.8 78.5 80.5 

Cole et al [4] 95.2 64.5 88.3 78.4 77.3 
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Figure 1. Raw data of night time activity. In red, 300 crosses-by-

zero, value in which data was saturated.  

Actigraph mode was chosen based on literature [5], [10]. 

The 119 recordings available for this study were obtained 
from 15-year-old healthy adolescents, totaling 64,102 one-
minute epochs. The recording sessions consisted in two 
consecutive nights of simultaneous PSG and ACT 
recordings. Some of the recordings (about 5%) were 
discarded because of heavy artifact presence. 

PSG data was recorded at 200Hz, measuring several 
physiological signals, such as EEG derivations, EOG, EMG, 
ECG, and others.  Based on PSG data, a hypnogram was 
constructed in 30-seconds epochs by a specialist. The asleep 
and awake markings of it were used as golden standard for 
ACT evaluation. The global percentage of sleep in all the 
considered recordings was 80.5%, not unlike previous studies 
(see Table I).  

B. Data Pre-processing 

PSG and ACT data were synchronized using the limb 
movements signal from the PSG. Synchronization precision 
between data is limited by the sample frequency of ACT, i.e. 
one minute. When the two 30-second PSG epochs associated 
with a single ACT epoch happened to have different 
classifications (any sleep stage and wakefulness or vice-
versa), that one-minute epoch was labeled as wakefulness in 
the target vector.  

Then, preprocessing was performed on ACT data with 
two goals: 1) filter out low-power noise found in some 
recordings. This noise consisted in several minutes of 
constant low-level activity (up to 10 counts per minute, but 
not fluctuating or only marginally fluctuating). 2) Saturate 
ACT data, leaving all the epochs with activity over 300 
crosses-by-zero, at 300 (figure 1). The saturation value was 
established using the training data set. It corresponds to a 
solid wakefulness period, and it helps to standardize a few 
recordings with high values of ACT. 

C. Feature Extraction 

An 11-minutes window was applied on the ACT data, as 
used elsewhere in the literature [4], [5], considering the 
current sample at the center of the window, and including 
both the five previous and five following samples. 

Thirty four features were calculated for each 11-min 
window, including raw and logarithm activity level of every 
sample, and median, median absolute deviation, minimum 
value and number of minutes with non-zero activity for 
different combinations of samples. Stepwise Discriminant 
Analysis [5] was used to discard features with little or no 
contribution to the classification, The nine characteristics 
extracted from the window were: 

 The natural logarithms of: 
1) The median of the 11-minutes activity counts; 

2) The median of the activity counts of the initial 6 

minutes of the 11-minutes window; 

3) The median of the activity counts of the final 6 

minutes of the 11-minutes window; 

4) The median absolute deviation of activity counts 

of the initial 6 minutes of 11-minutes window;  

5) The median absolute deviation of activity counts 

of the final 6 minutes of 11-minutes window. 

All these variables (natural logarithms) were added a 
unit before serving as inputs to the ANN. 

 The number of minutes with modified (because of the 
pre-processing) activity counts over 0 of: 

6) The initial 6 minutes of the 11-minutes window 
7) The final 6 minutes of 11-minutes window 

8) The activity count of the central minute 
9) The time of the day 

The time was expressed as the minute of the day 
beginning at midnight (values between 1 and 1440). The 
median was chosen as measure of central tendency and 
median absolute deviation (MAD) as measure of dispersion 
because these are robust statistics measures, independent of 
the distribution of the data. 

D. Classification 

To carry out a proper classification using ANN, data 
classified as wakefulness by the PSG was repeated in the 
training database four times, in order to balance data classes. 

Several tests using the training and test sets were made, 
searching for an optimal ANN architecture. McNemar’s Test 
[11] showed that there were many solutions with two hidden 
layers and different number of nodes with no significant 
statistical differences in their results. Finally, a two hidden 
layer configuration 9:15:14:1 was chosen because it had the 
highest performance. The ANN was configured using 
Levenberg-Marquardt as training algorithm, mean square 
error for performance measurement, and the hyperbolic 
tangent sigmoid as transfer function in all layers. The 
selection of this configuration and algorithms was done 
empirically. 

Results were obtained by training and testing the 

classifier using a × cross validation scheme [12]: Five 
iterations of 2-folds cross validations were performed. In 
each of the five iterations, the balanced database was divided 
in two sets, which were used alternatively as training and test 
set. A portion of the training set was randomly separated and 
used as validation set (proportion 4:1 between final training 
and validation sets). The ANN was trained ten times with 
each configuration; the best performer in the training and 
validation data sets for each partition was chosen. A total of 
ten “best performers” were obtained with this method. Once 
the “best performer” for a balanced dataset partition was 
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obtained, we searched for the threshold that maximized 
accuracy in the original unbalanced database. For each ANN 
obtained, a ROC curve was built by moving the threshold 
value of the ANN output. We then looked for the point in the 
ROC curve that had the highest accuracy on the original 
unbalanced data, considering this accuracy as the weighted 
mean of sensitivity and specificity, the weight being the 
proportion of data (0.8047 for sensitivity and 0.1953 for 
specificity).  The threshold found with this method was 
applied to classify the test data set. This was done ten times, 
one for each partition, and its average is considered as the 
system performance. 

III. RESULTS 

The overall accuracy considering epoch-by-epoch 
comparison of the output of the ACT system and PSG (as 

golden standard) was measured using the × cross 
validation explained above. Accuracy (index of correctly 
detected epochs over the total number of epochs) obtained 
from the ANN trained on the balanced database was 
88.1±0.4%, Sensitivity (index of correctly detected sleep 
epochs over the number of epochs marked as sleep by golden 
standard) was 92.4±1.5%, and Specificity (index of correctly 
detected awake epochs over the number of epochs marked as 
awake by golden standard) was 83.6±1.4%, reaching a G-
mean value of 87.9±2.9%. Detailed results are shown in table 
II. 

The ANN output value (between 0 and 1) allows to 
perform different classifications by modifying the output 
threshold (default value is 0.5). In this way it can be adapted 
to improve the score of one state at the expense of the other. 
Sleep/wakefulness classification of sleep recordings is a 
prime candidate for this, because the imbalance of data 
causes that having a higher index of correct sleep 
classification involves a higher improvement on overall 
accuracy. The effect of modifying the threshold value can be 
described in a ROC curve (figure 2). 

Considering the database with its original unbalanced 
proportion of sleep/wakefulness at the optimal threshold on 
the ROC curve was 0.22±0.01, results showed an accuracy of 
92.8±0.4%, a sensitivity of 97.6±0.3%, and a specificity of 
73.4±1.4%, reaching a G-mean of 84.6±1.8% (table III). 

Comparing with previous studies, our system added new 
inputs, such as the time of the day and those referring to the 
initial or end part of 11-min window (features 2-7), relating 
motor activity with the circadian cycle. In a future work, in 
order to generalize our method, the use of the time of the day 

variable would need to be preprocessed in order to correct for 
daytime sleepers, night workers and others with an altered 
day-night rhythmicity. For now, we tested how our system 
would perform without time-related features: time of the day 
and features 2-7. We replaced features 2-7 (each calculated 
twice, one taking the initial 6 min of the window and another 
taking the final 6 min) by the same calculation, but calculated 
once for the whole window. Using the original dataset with a 
threshold of 0.21±0.02 calculated with the training data set, 
results of this classification fell to 91.3±0.2% of accuracy. 

× cross validation paired t Test [11] was carried out to 
compare results of the classification with and without the 
time-related feature.  ̃ Statistic calculated were equal to 
5.7027 (              ). A ROC curve was also 
constructed by varying the output threshold of this modified 
ANN classifier (figure 2). Comparisons among algorithms 
built in this study are presented in table IV. 

IV. DISCUSSION 

The methodology presented in this study aimed at 
optimizing classification results, disregarding the data 
balance between the two states of the database. Our 
proposition is that the classification can be optimized to the 
proportion of classes after training, by adjusting the output 
threshold. 

These results allow us to perform comparisons with 
previous studies because the balanced database does not 
include any new data, but was enlarged just by repeating 
wakefulness data. Comparing with previous studies [4]–[9], 
our selection of characteristics introduced 3 features that 
were calculated twice (median, number of minutes over 0, 
and median absolute deviation of ACT), one for the initial 
segment and another for the final segment in the 11-minutes 
window. Features calculated twice allowed obtaining 
tendency data and, along with time of the day, helped to 
identify the beginning and the end of sleep, reducing false 
awakening detections in the middle of the night, triggered by 
unconscious movements. 

Besides, use of the median and median absolute deviation 
as statistical measures of central tendency and dispersion 
respectively avoids the unproven assumption of normal 
distribution of the data. 

In order to compare the results of our method with 
previous works, we implemented Sadeh’s algorithm for 
sleep/wakefulness classification [5] and tested it with our 

original unbalanced dataset. For each iteration of × cross 

TABLE II. AVERAGE RESULTS OF THE ANN CLASSIFIER TRAINED ON 

A × CROSS VALIDATION TEST USING BALANCED DATA. IN EACH 

TRIAL, THE NUMBER OF MINUTES IN A STATE IS AN INTEGER. 

 

PSG 

Total Scored as Sleep Scored as Wake 

minutes Minutes 

Class. 

as 

Sleep 

minutes 23823±381 4091±352 27914 

% 

column 
92.4±1.5 16.4±1.4  

Class. 

as 

Wake 

minutes 1968±378 20891±350 22859 

% 

column 
7.6±1.5 83.6±1.4  

Total 25791 24982 50773 

 

TABLE III.  AVERAGE RESULTS OF AN ANN CLASSIFIER TRAINED 

USING × CROSS VALIDATION WITH BALANCED DATA, AND THEN 

ADAPTING THE THRESHOLD TO OPTIMIZE OUTPUT WITH  THE ORIGINAL 

UNBALANCED DATA. 

 

PSG 

Total Scored as Sleep Scored as Wake 

minutes Minutes 

Class. 

as 

Sleep 

minute 25171±80 6653±351 31824 

% 
column 

97.6±0.3 26.2±1.4  

Class. 

as 

Wake 

minute 619±64 18329±331 18948 

% 

column 
2.4±0.3 73.8±1.4  

Total 25790 24982 50772 
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Figure 2. ROC curve of 3 classifiers tested in this study. In black, our 

ANN classifier using time-related features. In red, our ANN classifier 

without time-related features. In blue, Sadeh’s classifier. 

 
validation, data in the training set was used to adjust the 
classifier and find an optimal threshold. The classifier was 
then applied on the test dataset. Sadeh’s algorithm was 
selected for comparison because of its reproducibility and its 

good published scores. A × cross validation paired t Test 
[11] was carried out to compare the results of the two 
algorithms. Calculated  ̃ statistics were equal to 5.6341 
(              ). It is also possible to modify the 
threshold value for Sadeh’s algorithm to obtain a ROC curve 
(figure 2), which gives points with different G-mean values.  

We used an ANN as classification tool because of its 
ability to adjust its performance to any point of the ROC 
curve. Also, since its output is a continuous value between 0 
and 1, it can be interpreted as class membership index for 
each input. On the other hand, the ANN classifier requires 
an extensive computing time for its training process to 
obtain an optimal performance, which is not a significant 
handicap for this application. 

V. CONCLUSIONS 

In this work a sleep/wakefulness classification method to 
score 1-minute ACT epochs is presented. Its performance is 
comparable to a well-known algorithm described in the 
literature [5]. Our system obtained an accuracy of 

92.8±0.4%, a sensitivity of 97.6±0.3% and a specificity of 
73.4±1.4%. 

The use of an input that links ACT data with the circadian 
cycle improved the classification results. The time of the day 
input can’t be directly applied in groups of subjects with 
different sleep schedules. In those cases, we would need 
further research to learn how to adapt the time of the day 
variable in order to make it a useful classification input.  

The differences between the results obtained by us with 
Sadeh’s algorithm and the results published by Sadeh et al. 
[5] could be due to difference in actigraph types, size of the 
database or subjects. Also, as can be seen in figure 2, 
performance of ANN without time-related features and 
Sadeh’s classifier (table IV) are quite similar. This could be 
because similarity of features used, and could be 
independent of the classification method.  

Other paths of future work to improve the performance of 

the classifier would be using the ANN output as an input for 

a second line classifier, and defining new discriminant 

features. Another line of research would be to add other data 

acquisition instruments to record other features 

simultaneously, such as EOG, ECG, chest volume, etc., 

which would probably improve the performance and 

robustness of the classifier. 
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TABLE IV.  COMPARISON OF THE AVERAGE RESULT OF THE ACT 

CLASSIFICATION ALGORITHMS STUDIED WITH OUR  DATASET 

Algorithm 
Sensibility 

% 

Specificity 

% 

Accuracy 

% 

G-mean 

% 

Sadeh et al [5] 96.5±0.4 67.8±1.7 90.9±0.2 80.9±2.4 

ANN without 
time-related 

features 

97.5±0.3 66.8±1.4 91.3±0.2 80.7±1.9 

ANN with 
time-related 

features 

97.6±0.3 73.4±1.4 92.8±0.4 84.6±1.8 
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