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Abstract— Scalp electroencephalogram (EEG), a recording
of the brain’s electrical activity, has been used to diagnose
and detect epileptic seizures for a long time. However, most
researchers have implemented seizure detectors by manually
hand-engineering features from observed EEG data, and used
them in seizure detection, which might not scale well to
new patterns of seizures. In this paper, we investigate the
possibility of utilising unsupervised feature learning, the recent
development of deep learning, to automatically learn features
from raw, unlabelled EEG data that are representative enough
to be used in seizure detection. We develop patient-specific
seizure detectors by using stacked autoencoders and logistic
classifiers. A two-step training consisting of the greedy layer-
wise and the global fine-tuning was used to train our detectors.
The evaluation was performed by using labelled dataset from
the CHB-MIT database, and the results showed that all of the
test seizures were detected with a mean latency of 3.36 seconds,
and a low false detection rate.

Index Terms— epileptic seizures, scalp electroencephalogram,
deep learning, unsupervised feature learning, stacked autoen-
coders

I. INTRODUCTION
About 50 million people worldwide have epilepsy [1],

which is a disorder of the brain characterised by recurrent
epileptic seizures. They suffer from repeated, unpredictable
seizures, whose effects can vary from disturbances of move-
ment and brief loss of consciousness. These seizures are
brief episodes of sign and/or symptoms due to abnormal
excessive or synchronous neural activity in the brain [2].
One of the most common approaches to detect and guide
therapy for these seizures is through analysis of the scalp
electroencephalogram (EEG), which is the recording of the
brain’s electrical activity.

In order to achieve this, most researchers have developed
tools to analyse and detect seizures from patients’ brain data
by manually hand-engineering features that are representative
enough to be used to train supervised learning algorithms [3],
[4], [5], [6], [7]. This feature engineering is a way to
utilise ingenuity and expert knowledge of human being to
create good features for machine learning algorithms [8].
In [5], they utilised Fourier transformation to build patient-
specific seizure detectors. They extracted energy of each
EEG epoch from selected EEG channels to construct a
spectral and spatial feature vector. This vector can be used to
detect the presence or absence of some spectral components
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occurred due to seizures. In [7], they also utilised wavelet
decomposition and statistical measurement to extract a useful
feature called a combined seizure index (CSI). This CSI
is computed from rhythmicity and relative energy of the
EEG in the desired EEG channel, and it will be increased
significantly during seizure periods. This CSI is also sensitive
to the consistency among different EEG channels, which
can help reduce false seizure alarms as well as improve the
detection performance.

These hand-engineering techniques, however, might not
scale well to new patterns of seizure activity, which might
be observed in the future. This is due to the fact that EEG
data is non-stationary, and the seizure patterns vary across
different patients [5]. Thus, hand-engineering new features
each time new seizure patterns are observed might be labour-
intensive and time-consuming. It would be better if seizure
detectors are less dependent on human, and are able to learn
features from the observed data by themselves.

One of the promising techniques capable of automatically
learn good feature representations from unlabelled data is
Unsupervised Feature Learning [8], [9], which is the recent
development of deep learning. By using multi-layer (or
deep) neural networks in combination with special training
schemes, meaningful feature representations can be extracted
from unlabelled data. Recently, there are some researchers
who applied one of the unsupervised feature learning tech-
niques, called deep belief nets (DBNs), to perform multi-
class classification and anomaly detection on EEG data [10].
The performance of their system were competitive with the
recent hand-engineering approaches.

In this paper, we investigate the possibility of applying
stacked autoencoders [11], which was trained by using the
greedy layer-wise [12] and the global-fine-tuning to learn
feature representations from raw, unlabelled EEG data that
are informative enough to be used in seizure detection. As
the characteristics of EEG vary significantly across different
patients [5], implementing seizure detectors for each patient
can improve the performance of seizure detection. Therefore
we develop patient-specific seizure detectors that utilise 1)
stacked autoencoders to extract features from the EEG data;
and 2) logistic classifiers to perform seizure classification
based on the learned features.

II. METHOD

The characteristic of the scalp EEG data used in this
study is first introduced in Sect. II-A. In Sect. II-B, two
main components used in our seizure detectors are briefly

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 4184



described. Then the details of how we used these two compo-
nents to build patient-specific seizure detectors is explained
in Sect. II-C.

A. Scalp Electroencephalogram

Scalp electroencephalogram (EEG) is the recording of the
electrical activity of the brain measured by using electrodes
on the scalp. The voltage measured between two electrodes
forms an EEG channel.

In this study, an EEG data in the CHB-MIT database [13]
was used. This database contained EEG recordings from 23
cases collected from 22 patients who had intractable seizures,
and there were 173 events were judged to be clinical seizures
by experts. The EEG signals were sampled at 256 Hz, and
stored in one- or two-hour long record files. Most of these
files contained 23 EEG signals. This EEG data was recorded
by positioning scalp electrodes according to the international
10-20 system [14]. The terms seizure records and non-seizure
records are used to refer to record files that contain one
or more seizures, and record files that do not contain any
seizures respectively.

At the beginning of most seizures, a set of EEG channels
start to develop different rhythmic activities, which typically
contains a number of frequency components. The patterns
of the rhythmic activity also appear differently in different
EEG channels across patients. Therefore, in this study, only
EEG data from the representative channels were used to train
and test the detector for each patient. In particular, Fig. 1
and Fig. 2 show seizures from different patients, and the
vertical red dash-lines indicate the onset of Patient A’s and
B’s seizures. In Fig. 1, Patient A’s seizure begins at 3801
seconds, and Patient B’s seizure begins at 2996 seconds
in Fig. 2. From these two figures, it can be seen that the
appearances of seizure activities of Patient A and B are
most prominent on the different channels. For instance, the
representative channels of Patient A are T7-P7(3) and P7-
T7(19), while the representative channels of Patient B are
FP2-F8(13) and F8-T8(14). Thus, in this example, only EEG
data from T7-P7(3) and P7-T7(19) channels is used to train
and test the detector for Patient A, and only EEG data from
FP2-F8(13) and F8-T8(14) channels is used to train and test
the detector for Patient B.

B. Stacked Autoencoders and Logistic Classifiers

1) Stacked Autoencoders: A stacked autoencoder
(SAE) [11] is a neural network consisting of multiple
layers of sparse autoencoders in which the outputs of
each layer is forwarded to the input of each subsequent
layer. A sparse autoencoder is a neural network consisting
of only one hidden layer. It is an unsupervised learning
algorithm capable of extract good feature representations
from unlabelled data. By setting the target value of the
autoencoder to be equal to the input, the autoencoder tries
to learn features that can be used to reconstruct the input.

The important property of the sparse autoencoder is that
given a large amount of unlabelled data, the autoencoder
can learn good feature representations of the input. Thus,

Fig. 1. An example of a seizure pattern in the scalp EEG data of Patient
A.

Fig. 2. An example of a seizure pattern in the scalp EEG data of Patient
B.

the multi-layer (or stack) of the autoencoders can be used
to learn useful feature representations from EEG data, as
the subsequent layers can utilise the features learned from
the previous layers to produce even more useful features.
These feature representations can be then applied in seizure
detection.

2) Logistic Classifiers: In each seizure detector, a binary-
class logistic classifier [15] was stacked at the top of
the SAE. This enabled the classifier to utilise the feature
representations learned from the SAE. Using these learned
features in combination with their associated labels from the
EEG dataset, the logistic classifier can learn to determine
which part of EEG data contains seizure activity.

C. Patient-Specific Seizure Detectors

The seizure detector for each patient was built by using
SAEs and logistic classifiers consisting of one input layer,
two hidden layers, and one output layer (256-500-500-1).
The two hidden layers (i.e., SAEs) were used to learn good
feature representations from raw, unlabelled EEG data, which
were then used by the output layer (i.e., logistic classifier)
to detect the onset of the seizures. The EEG data of each
channel was segmented into 1-second epochs before being
used in training and seizure detection processes. Due to the
fact that the patterns of seizure activity vary across different
patients, thus only representative channels were used. The
representative channels of different patients might not be the
same depending on the appearance of the prominent seizure
patterns as discussed in Sect. II-A.
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1) Training: The training process was done in two main
steps: pretraining and fine-tuning. In particular, the SAEs
with the logistic classifier was first pretrained by using a
greedy layer-wise approach [12] over raw, unlabelled EEG
data to obtain initial model parameters. These parameters
were then used as a starting point for the second training step.
The second step was to perform a supervised global fine-
tuning to further improve the performance of the detectors
by using labels associated with EEG data. We found that
training with only the global fine-tuning step offered poor
performance than the two-step training. This is because the
pretraining step helps avoid getting stuck in local optima,
which can typically occur with random initialisation.

In this study, the mini-batch gradient descent, which con-
siders 10 training examples in each step of gradient descent
to update model parameters, was used to perform this two-
step training. The number of epochs used in the first and the
second steps were 10 and 20 respectively. The training set
was randomly shuffled at the beginning of each epoch. The
regularisation was also used to prevent overfitting problem
as well as to prevent hidden layers to learn the identity
function (i.e., one-to-one mapping). The learning rate and the
regularisation weight were set to 0.05 and 0.003 respectively.

2) Seizure Declaration: Given a set of 1-second epochs
of EEG data from the representative channels, our detectors
determine whether each 1-second epoch of EEG data in each
channel has seizure activity.

Formally, given the i-th 1-second epochs of EEG data
{x(i,1), . . . ,x(i,k)} from k channels, where x(i, j) ∈ R256; and
x(i, j) is the i-th 1-second epoch of the j-th channel, our de-
tectors produce an output set {u(i,1), . . . ,u(i,k)} for k channels,
where u(i, j) ∈ {0,1}; and u(i, j) is the i-th output of the j-th
channel. u(i, j) is equal to 1 if the probability that the input
x(i, j) having seizure activity is greater than the threshold;
otherwise, u(i, j) is equal to 0. In this study, the threshold
was set to 0.5.

Our seizure detectors declare each 1-second epoch of EEG
data from k representative channels as a seizure when the
number of u(i, j) = 1 is greater than or equal to a specified
threshold (or a channel threshold). Different values of chan-
nel thresholds affect the performance of our seizure detectors
which will be discussed in Sect. III-C. The term seizure
channel is used to represent the number of representative
channels that our seizure detectors determine as having
seizure activities.

III. EXPERIMENTAL EVALUATION

A. Scalp EEG Dataset

In our experiment, six of 23 cases were randomly chosen
to evaluate the performance of our detectors, and only seizure
records were used as it is sufficient to demonstrate the
performance of our detectors. Thus, our dataset included 44
hours of EEG data with 39 seizures events. Before the EEG
data of each channel was used to train and test our detectors,
it was divided into 1-second epochs, and pre-processed with
the mean normalisation and feature scaling in order to speed
up the gradient descent.

B. Performance Measurement

The performance of our detector was evaluated by using
sensitivity, specificity and latency. Sensitivity refers to the
percentage of seizures in the test set being identified. Speci-
ficity refers to the number of times per hour our detector
declared the onset of seizures in non-seizure periods. Latency
refers to the delay between the onset of seizures judged by
experts and the onset of seizures declared by our detectors.

To estimate our detector’s performance on data from each
patient, a leave-one-record-out cross-validation scheme [5]
was used. Suppose there were NS seizure records. The
evaluation scheme uses NS− 1 seizure records to train the
detector. The detector was then used to detect the seizures in
the seizure record that was not used in training. This process
is repeated NS times so that each seizure record was tested.
For each round, the number of detected seizures and the
detection latency was recorded.

C. Results

Fig. 3 shows an example of the scalp EEG data of Patient
A (top), and the number of representative channels (bottom)
that our seizure detectors determine as having seizure activi-
ties (or seizure channels). In this example, the representative
channels were the channel 2,3,19,20 and 21. If the channel
threshold is set to 1, our detector was able to the detect this
seizure with 2-second delay (i.e., at 3803 second). If the
channel threshold is set to 2, the onset seizure was detected
with 3-second delay (i.e., at 3804).

In our experiment, three channel thresholds: 1, 3 and
5, were used to evaluate the performance of our seizure
detectors. Table I shows the summary of the sensitivity and
latency evaluated by using these three channel thresholds.
The results demonstrated that our seizure detectors were able
to detect all of 39 test seizures with a mean latency of 3.36
seconds when the channel threshold was set to 1. When the
threshold was increased, our detectors started to miss some
seizures and became slower in declaring the seizures’ onset
as most of the prominent seizure activities in the scalp EEG
data start to appear after the seizures have begun for a while
(see Fig. 3).

Fig. 3. An example of the scalp EEG data of Patient A (top) associated
with the number of seizure channels (bottom) determined by our seizure
detector.
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TABLE I
SENSITIVITY AND LATENCY OF OUR SEIZURE DETECTORS.

Channel Threshold Sensitivity (%) Mean Latency (sec)
1 100% 3.36
3 100% 6.87
5 87.18% 11.18

Fig. 4 shows the number of false detections per hour (i.e.,
specificity) for each of the six cases with three different
channel thresholds. Our detectors produced the lowest false
detection rate when the channel threshold was set to 5. This
was, as expected, in contrast to the case of sensitivity and
latency. When the channel threshold was set to a higher
value, our detectors would declared each 1-second epoch of
EEG data as having seizure activity only when they were
very confident. Even though, the higher threshold made our
detectors less sensitive to the noise in the EEG data that
has a similar pattern to the seizure activity, some of the
seizures, however, might not be detected, or detected with a
high latency. Therefore, the channel threshold can be used to
specify tradeoff between sensitivity, specificity and latency.
It is worth mentioning that the false detection rates of Patient
4 were surprisingly high compared with the other five cases.
This might be because the non-seizure and seizure activity
of Patient 4 were very similar.

Some of the falsely declarations were also observed during
the seizures. In particular, our detectors falsely determined
some 1-second epochs of EEG data as not having seizure
activity as illustrated in Fig. 3. This is because the rhythmic
activity during seizures is unstable, and termination of each
seizure is less obvious than the onset [2]. Thus, our detectors
might misclassify some rhythmic activities during seizures
as non-seizure activities. However, this does not affect the
performance of our seizure detectors as we are interested
only the declaration of the seizures’ onset.

The seizure detectors were implemented using MATLAB
and evaluated on a common computer (CPU 3.40 GHz and
RAM 16.0 GB). The training time varied depending on the
amount of training examples, which ranged from 2 to 5
hours. The run time of the detectors was ∼10 ms for each
1-second data, which can be used in online seizure detection.

According to the results obtained from our experiment,
we believe that the SAE trained with the two-step training
is capable of learning good features from raw, unlabelled
EEG data that are representative enough to be used in seizure
detection. The best choice of the channel threshold depends
on the seizure patterns in each patient.

IV. CONCLUSIONS

We investigate the possibility of applying the recent de-
velopment of unsupervised feature learning to extract mean-
ingful features from raw, unlabelled EEG data such that they
can be used in seizure detection. We utilise the SAEs and
logistic classifiers to build patient-specific seizure detectors.
The results of our experiment confirmed that our detectors
were able to detect seizures by using features learned from
the EEG data.

Fig. 4. False detection rates per hour for each of the six cases with three
different channel thresholds.
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