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Abstract— Extravasation during intravenous (IV) infusion is 

a common secondary effect with potentially serious clinical 

consequences. The correct positioning of the needle in the vein 

may be difficult to confirm when no blood return is observed. 

In this paper, a novel method is proposed for the detection of 

extravasation during infusion therapy. A small volume of a 

sodium bicarbonate solution is administrated IV and, following 

its consecutive dissociation, an excess of carbon dioxide (CO2) 

is rapidly exhaled by the lungs. The analysis of the exhaled 

CO2 signal by a pattern recognition algorithm enables the 

robust detection of the CO2 excess release, thereby confirming 

the absence of extravasation. Initial results are presented for 

the application of the method on a group of 89 oncology 

patients. 

I. INTRODUCTION 

Over 100,000 doses of chemotherapy and in excess of 

1,000,000 intravenous (IV) infusions are given every day 

around the world [1]. Minimizing adverse events and 

complications of these procedures is important both for the 

patients receiving them and the healthcare systems in which 

they take place. Extravasation and infiltration are common 

complications of intravenous (I.V.) infusion therapy. 

Extravasation can cause accidental administration of 

intravenously  infused medicinal drugs into the surrounding 

tissue, either by leakage (e.g., because of brittle veins in very 

elderly patients), or direct exposure (e.g. because the needle 

has punctured the vein and the infusion goes directly into the 

arm tissue). In particular, solutions containing calcium, 

potassium, contrast media, some antibiotics, vasopressors, or 

chemotherapeutic agents may be very irritating and harmful. 

In mild cases, extravasation can cause pain, reddening, or 

irritation to the infused arm. Severe damage may include 

tissue necrosis and, in extreme cases, even the loss of an arm.   

It is critical that an extravasation is recognized and diagnosed 

early. The tools available today to recognize and detect 

extravasation in its early stages are mainly subjective and rely 

on the awareness to all relevant signs and symptoms. 
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Closed Claims database revealed 2% of all claims were 

related to peripheral IV catheterization and over half of these 

were due to extravasation. Even higher rates could be 

expected with other health care providers given the presumed 

expertise of anesthesiologists in IV cannulation [2]. The best 

"treatment" of extravasation is certainly prevention [3]. To 

date, no objective test is available to confirm the 

intravascular placement of catheters. In this paper, we present 

a novel method that enables to assess functionally the 

presence of extravasation during IV infusions. The proposed 

method is validated on a group of 89 patients. 

II. METHODS 

A. The bicarbonate test 

In a water solution, sodium bicarbonate (NaHCO3) 

dissociates and exists mainly in the form of bicarbonate ions 

(HCO3
-
). When injected into the blood, bicarbonate ions will 

further transform into water and CO2 (equation 1): 
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The resulting CO2 excess is rapidly exhaled by the lungs [4]. 

In fig. 1, the temporal plot of the CO2 partial pressure (Pco2) 

obtained by capnography is shown after IV injection of a 

diluted bicarbonate solution. Each wave corresponds to a 

breathing cycle, the peak of the wave being the end tidal 

value, denoted Petco2. 

 

 
 

Figure 1. Temporal plot of the CO2 partial pressure (Pco2) 

obtained by capnography after IV injection of a diluted 

sodium bicarbonate solution. 
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Injection is performed at time = 0 seconds. It can be seen that 
a peak in Pco2 at exhalation is reached at time =16 seconds, 
that is 4 breathing cycles after injection. Note that the peak is 
reached at the end of an exhalation cycle, where Pco2 is equal 
to Petco2. 

The successful observation of a response wave consecutive to 
the bicarbonate injection is a strong evidence that the 
injection was effectively performed intravenously, without 
extravasation, since the CO2 excess made it all the way out 
through the lungs.   In the following section, an algorithm is 
presented for the automatic detection of the bicarbonate 
response wave using a machine learning approach. When 
extravasation occurs, the injected bicarbonate does not reach 
the lungs as it disperses in nearby tissues. Since real 
extravasation cannot be intentionally performed for ethical 
reasons, it is simulated in this work by an IV injection of a 
harmless saline solution that has no incidence on the amount 
of exhaled CO2.  

 

 

 
Figure 2. Main steps of the proposed method. 

 

B. The detection algorithm 

The main steps of the proposed method are given in the 

block diagram of fig. 2. In the training phase (left), a 

supervised classifier learns to recognize bicarbonate 

response waves in the Pco2 signal generated by a 

capnograph. 

For this purpose, the input signal is first processed to extract 

its upper envelope (blue curve). In fact, Petco2 reflects most 

of the signal increase caused by the bicarbonate injection. 

However, since Petco2 is measured only once per breath, the 

upper envelope is used to smoothly interpolate Petco2. The 

resulting signal is better suited for the consecutive feature 

extraction step.  

In order to obtain the envelope, the end tidal peaks need to 

be extracted for each breath. This is performed by 

thresholding the CO2 signal at a constant value, empirically 

set to 20 mmHg, and extracting the maximal value in each 

resulting segment. The envelope is then obtained by fitting 

linear segments between the peaks and smoothing by a 

moving window averaging filter (width = 10 samples).  

The next step is the computation of descriptors providing 

good discrimination power between the bicarbonate response 

wave and natural fluctuations of Petco2. The discrimination 

power is quantified by the signal to noise ratio (SNR) of the 

descriptor define by [5]: 

 

)()((

)()(

22
salbic

salbic
SNR








      (2) 

 

Where )(bic , )(bic   and )(sal , )(sal  are the 

average and standard deviation values of the given descriptor 

computed over a training set of Petco2 envelope signals 

acquired following the injection of bicarbonate and saline 

solutions, respectively.  

A set of descriptors were initially considered to describe the 

envelope signal and defined as follows: 

 

 The Maximal peak amplitude (PA): amplitude of 

the highest peak observed in the envelope signal 

following injection and measured above the 

baseline value. The baseline being defined as the 

average signal value computed during the 10 

seconds that preceded injection.   

 The wave duration (WD): lapse of time between the 

first instant where a signal increase of 0.15xPA is 

observed above the baseline, to the first instant 

where the signal has decreased by 0.85xPA, after 

reaching the maximal peak value (defining PA) .  

 The temporal location (PL) of the maximal peak 

after injection. 

 The mean (MN) and standard deviation (SD). 

 The skewness (SK), expressing the degree of 

asymmetry of the values around the mean [6].  

 The kurtosis (KT), reflecting the relative 

peakedness or flatness in comparison to a normal 

distribution [6]. 

 Shanon entropy (SE), providing an indication of the 

signal randomness [7].  

 

The features selected from the initial set are generally 

required to have high SNR while presenting a low mutual 

correlation. SNR and correlations for the features above will 

be computed on real data in the experiments section (section 

3). 

Eventually, a supervised classifier is trained on the  training 

set [8]. Considering the limited size of the overall dataset, 

the support vector machines (SVM) are an attractive choice 

as they provide strong generalization properties with a good 

immunity to the curse of dimensionality [8].  
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In the testing phase (fig.2 , right), the input  Pco2 signal 

undergoes the same pre-processing as in the training phase, 

although only the feature selected during the training phase 

are actually computed to produce a feature vector x. 

Consecutively, the trained SVM classifier assigns a 

classification score C(x) according to [9]: 
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where si are the support vectors, αi are the weights, b is the 

bias, and k is a kernel function. In the case of a linear kernel, 

k is the dot product between the input vector x and support 

vector si. The score indicates (in absolute value) the distance 

between the considered feature vector and an optimal 

decision hyper-plane. Therefore, large scores generally 

correspond to a confident classification, whereas small 

scores may lead to ambiguity. Non-linear kernel such as the 

radial basis functions are also popular choices for the kernel 

functions, defined by [9]: 
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where σ defines the Gaussian shaped window size around 

the support vector. Rbf kernels transfer the classification 

problem into a higher dimensional space where linear 

separation by hyper-plane may be better achieved for the 

data at hand. 

Eventually, a threshold is applied to the score in order to 

obtain the desired working point on the receiver operator 

characteristic (ROC).  

  

III. EXPERIMENTS 

Following authorization by the hospital IRB, the test was 

validated on a dataset of signals acquired from of 89 

oncology patients that provided their prior written consent. 

Oncological patients are particularly concerned by 

extravasation risks. The chemotherapy substances they 

regularly receive by IV infusion are particularly harmful if 

injected outside the vein. Each recruited patient was IV 

injected in the forearm 20 mLs of 4.2% sodium bicarbonate. 

59 out the 84 patients were also administrated 20mLs of 

normal saline, at least 5 minutes before the bicarbonate 

solution was injected. The saline solution, injected to 

simulate the extravasation, was administrated before the 

bicarbonate to avoid any residual influence of the 

bicarbonate on the recorded saline signal. The CO2 signals 

where acquired using a Capnostream 20, capnograph 

(Oridion, Israel) at 20 samples/s, for a time period of 90 

seconds after injection. The signals were transferred via an 

RS232/USB converter to a laptop computer for processing. 

In total, a dataset of 143 (=84+59) CO2 signals was created. 

 The GUI and the processing algorithm were both 

implemented in Matlab (Mathworks, USA). The 

experimental setting is shown in fig. 3. When the nurse 

initiates a new test from the GUI, the algorithm starts to 

analyze the input signal. After 20 contiguous seconds of flat 

signal, the GUI vocally prompts the nurse to perform the 

injection. The flat signal is defined by a maximal excursion 

of the CO2 envelope of less than 1 mmHg. 

The device triggered injection has the advantage of giving a 

reliable baseline for the CO2 signal before injection. 

Moreover, the variability of the actual injection starting time 

is minimized as the nurse waits for the vocal trigger to start 

the injection.  

 

 
Figure 3. Experimental setting. 

 

The acquired dataset was then transformed into feature 

vectors according to the method described in section 2.  For 

the purpose of feature selection, 50 signals were selected 

randomly out of the 143. The remaining 93 were kept for 

testing and training the classifier. The SNR (table 1) was 

then computed for each feature in the original set (section 2): 

peak amplitude (PA), wave duration (WD), maximal peak 

location (PL), mean (MN), standard deviation (SD),  

skewness (SK), kurtosis (KT), and  Shanon entropy (SE).   

 

Table 1 : SNR values for the original set of features   

PA PL WD MN SD KT SK SE 

0. 62  0. 01 0. 53 0.17 0. 55 0. 20 0. 44 0. 06 

 

The Correlation coefficient was also computed between the 

features and shown in fig. 4. For PA, WD, SD and SK, the 

SNR is in the 0.44-0.62 range, which is notably higher than 

for the remaining features. The correlation coefficient 

between these 4 features is below 0.65, which is reasonable 

(fig.4). In practice, these 4 features are selected together with 

the mean value (MN). Although MN gave a poor SNR, it 

may prove very useful for the identification of signals 

corresponding to non-physiological situations, where the 

baseline signal is out of range. This can happen, for instance, 

if the flexible CO2 sampling tube connecting the patient to 

the capnograph  has a leakage or is pinched.  

 

 
Figure 4.  The Correlation coefficient computed between the 

features.   
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Next, a 10-folds cross validation framework was applied to 

evaluate the performance of the classification algorithm [10]. 

For this purpose the 93 signals not used for features 

selection (54 bicarbonate and 39 saline) were randomly 

divided into 10 disjoints sets containing approximately the 

same number of signals (that is 9-10), the complement (83-

84 signals) being kept for training the classifier in the 

considered fold. SVM training and classification were 

performed using Matlab statistical toolbox SVM 

implementation. The SVM classification function provided 

by Matlab was modified to provide the classification score 

(equation 3) as output instead of a crisp label corresponding 

to the score sign.  

Two kernel types were compared: linear and radial basis 

function. Matlab default value σ=1 was used for the rbf 

window size parameter. ROC curves were generated by 

applying a range of threshold values to the classification 

score in order to obtain crisp labels. The curves are shown in 

fig. 5 for both kernel types. Sensitivity is plotted against the 

false positive (FP) rate (=1-Specificity). The resulting area 

under the curve (AUC) for the ROC curves is 0.892 for the 

rbf kernel and 0.903 for the linear kernel, respectively. The 

superiority of the linear kernel over the rbf is best seen in the 

0.1-0.3 range of the FP rate.  

The choice of the optimal working point is usually 

application dependent. In real life scenario, only bicarbonate 

will be injected and if the classifier detects bicarbonate, the 

IV line is considered as correctly working and the 

therapeutic infusions will be injected to the patient through 

the line. Therefore, in order to stay on the safe side, FP rate 

should be minimized while keeping sensitivity at an 

acceptable rate. The working point at Sensitivity=0.844 and 

FP rate= 0.128 may give such a tradeoff. 

 

  

 
Figure 5. ROC curves for the linear (blue) and rbf (red) 

kernels. Sensitivity is plotted against the false positive (FP) 

rate.  

IV. CONCLUSION 

A new functional test was presented for the detection of 

infusion lines extravasation. The test relies on the detection 

of an exhaled CO2 excess response wave induced by the 

injection of a diluted sodium bicarbonate solution. A 

supervised learning algorithm was developed for the 

automation of the test. The algorithm was successfully 

validated on a group of 89 patients, demonstrating the 

feasibility of the method. In future work, the signal dataset 

will be extended to larger populations with different 

backgrounds (not only oncology patients).  Additional 

features will be investigated for the learning algorithm with 

more kernel types, as well as alternative classifiers. Another 

important aspect is the robustness of the test. For example, 

the current version requires from the patient to refrain from 

speaking during the test, in order to give accurate results. 

Similarly, biased results may be obtained if the CO2 

sampling line is pinched, by mistake, during the test. An 

algorithm will be developed for the detection of a perturbed 

test in order to invalidate its results automatically.  

In that case, the test may be repeated after a few minutes, 

since the dose of bicarbonate is sufficiently small to allow 

for a second injection without any harm.  
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