
  

 

Abstract— We have proposed a novel solution to a 
fundamental problem encountered in implementing 
non-ingestion based medical adherence monitoring systems, 
namely, how to reliably identify pill medication intake. We show 
how wireless wearable devices with tri-axial accelerometer can 
be used to detect and classify hand gestures of users during 
solid-phase medication intake. Two devices were worn on the 
wrists of each user. Users were asked to perform two activities 
in the way that is natural and most comfortable to them: (1) 
taking empty gelatin capsules with water, and (2) drinking 
water and wiping mouth. 25 users participated in this study. The 
signals obtained from the devices were filtered and the patterns 
were identified using dynamic time warping algorithm. Using 
hand gesture signals, we achieved 84.17 percent true positive 
rate and 13.33 percent false alarm rate, thus demonstrating that 
the hand gestures could be used to effectively identify pill taking 
activity.  

 

I. INTRODUCTION 

Medication adherence is defined as “the extent to which 
patients take medication as prescribed by their health care 
providers” [1]. Non-adherence to medication is a significant 
problem in the U.S. and results in over $100 billion in 
additional hospitalization costs each year. According to a 
report by the New England Healthcare Institute (NEHI), it is 
estimated that one-third to one-half of all patients in the 
United States are not adhering to their medications as 
prescribed by their doctors [2].  

Monitoring methods for medication adherence can be 
divided into direct and indirect. Examples of direct methods 
include measuring concentrations of a drug or its metabolite in 
blood or urine, detecting a biologic marker that is added to the 
medication, and direct surveillance of the therapy. On the 
other hand, self-reporting by the patient, questionnaires filled 
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out by the patient, counting the pills or measuring the 
medications taken by the patient, using electronic medication 
adherence monitoring systems (MAMS), measuring 
physiologic markers of the patient, and assessing the 
medication adherence through a caregiver are considered as 
indirect methods of measuring medication adherence [1, 3].  

Each method has its pros and cons, and no method is 
considered to be the gold standard. For instance, self-reporting 
methods are found to overestimate patients’ medication 
adherence, and won’t function for people with diminished 
memory. Those patients who report noncompliance are 
generally correct, but those who claim adherence, might not be 
[4]. Interview/questionnaire-based methods lack reliability 
because they strongly depend on the design of the questions 
and how the questions are asked [3]. In general, methods that 
depend on any active patient input, other than taking the 
medication, are not quite reliable for long-term monitoring [5]. 
On the bright side, numerous studies have shown that MAMS 
are more accurate than other techniques at assessing 
medication adherence [6, 7].  

The only MAMS solutions that have been commercially 
available since the mid 1980’s are based on detecting the 
medication container opening. These types of devices, which 
detect patients’ preliminary action right before taking the 
medication, are categorized as non-ingestion monitoring. 
These systems act when the patient opens the bottle or breaks 
the blister by wirelessly sending a message to a central server 
through the user’s mobile phone, thus indicating that a dose 
has been taken. These devices are safe, simple, low-cost, and 
easy to operate. However, they can be easily deceived – either 
deliberately or unintentionally. Moreover, these systems do 
not indicate how many pills are taken out in each opening, if 
any; they cannot indicate what has been done with medication. 

Shortcomings such as these have led to the advent of a new 
generation of ingestion-based MAMS technologies, which 
detect the actual ingestion of the medication and its dosage [8]. 
There are two such recent efforts, both of which are still in 
clinical trials. The first one from Sequella Inc. (Rockville, 
MD), uses a fluorophore included in the medication as a 
tracer, and detects it in the bloodstream through the skin via a 
wristwatch [9, 10]. Even though fluorophore tracers are used 
in medical imaging, their potential long-term side-effects on 
the human body are not well understood. The second 
ingestion-based MAMS device, from Proteus Biomedical Inc. 
(Redwood City, CA), is called Raisin. Raisin is a chip attached 
to every pill with a thin-film battery that is activated upon 
ingestion as it is exposed to the stomach acid. It sends a 
high-frequency electrical current through the tissue, which is 
modulated in a way that it provides a unique marker of the pill 
when detected by a receiver patch placed on the patient’s chest 
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or abdomen [11, 12]. Since Raisin uses currents instead of 
radio-frequency (RF) signals, the patch needs to have 
relatively large electrodes with good electrical contact with the 
skin. The major disadvantage of both of these systems is that 
they require modification to the actual medication, which 
essentially limits their applicability. Moreover, these 
technologies may not be acceptable to the consumer because 
of the stigma associated with ingesting material other than the 
medication (e.g., markers), even if they are safe for 
consumption. 

Considering the scale of this problem and the rudimentary 
state of the art technology, novel MAMS solutions seem 
crucial. We propose an innovative approach to design 
MAMS, by harnessing a user’s natural hand movement 
gesture to identify the pill taking activity. Our approach has 
the following salient features: is reliable (as demonstrated by 
our results), cost-effective (requires simple hardware), does 
not require patients to ingest potentially harmful markers, and 
can be readily used with existing medications. For realizing 
our system, we have used wireless wearable devices with 
tri-axial accelerometer to detect and identify users’ hand 
gestures during solid-phase medication intake. Experiment 
results on data collected from 25 users demonstrates the 
potential of our method. 

Rest of our paper is organized as follows. We first describe 
the devices and the systems used for data collection. Next, we 
explain the experimental procedure, signal processing, and 
identification methods. Then we present the results and finally 
discuss the results and possible future work to improve the 
methodologies. 

 

II. METHODOLOGY 

A. System Overview 

Two ez430-Chronos wristwatches (Texas Instruments), 
which feature a 96-segment LCD display, an integrated 
pressure sensor, and a three-axis accelerometer, were used in 
this study. The BMA250 (Bosch Sensortec) [12] sensors that 
are designed for measuring low-g acceleration are used in 
ez430-Chronos. The BMA250 has a programmable 
measurement range of ±2g, ±4g, ±8g, and ±16g. We 
programmed the watches to have the range of ±2g; hence the 
resolution was obtained as 3.9 mg. Each axis of the 
accelerometer was sampled at 20 Hz, and data was wirelessly 
transmitted to a computer. In order to avoid communication 
interference, one of the watches transmitted at 915 MHz and 
the other one at 433 MHz ISM bands. A custom-made 
program was developed in LabVIEW (National Instrument) 
that could simultaneously and in real-time obtain, display and 
restore the transmitted signals from both watches.  

B. Experimental Setup  

Twenty five subjects, 21 years old or older participated in 
this study. Subjects were asked to wear the two EZ-Chronos 
watches on their wrists, one on each hand, and perform two 
different activities in the way they feel comfortable and 
natural, while sitting in front of a table. The first activity 
(“activity-1” hereafter) consists in taking empty gelatin 
capsules with water. The second activity (“activity-2”), 
drinking a sip of water and wipe their mouth. Subjects were 

asked to alternatively perform each activity for ten times. The 
experimenter provided a cup of water and empty gelatin 
capsules (size-0) to the subjects on the table. Each segment of 
the experiment was initiated with the instruction of the 
experimenter that also began the signal acquisition, 
simultaneously, and stopped the signal acquisition as soon as 
the subject confirmed finishing the activity. All procedures 
were approved by the Institutional Review Board (IRB) 
Committee at the New York Institute of Technology. 

 C. Pre-Processing and Dynamic Time Warping (DTW) 
Algorithm 

The restored signals were retrieved for off-line analysis. 
The following notations were used for this section:  

 Xpw, Ypw, and Zpw denote the (discrete) time-series 
representing acceleration, in x, y, and z directions 
respectively, of the hand that was used to take a 
pill or wipe one’s mouth. This hand could be 
either left or right, depending on which hand the 
user preferred to use for taking pills or wiping 
mouth.  

 Xd, Yd, and Zd denote the time-series representing 
acceleration in x, y, and z directions respectively, 
of the hand that was used to drink water. This 
hand could be either left or right, depending on 
which hand the user preferred to use for drinking 
water. 

 A sample is a collection of six time series: Xpw, 
Ypw, Zpw, Xd, Yd, and Zd. 

Following steps were used to pre-process the signal: 

1. Xpw, Ypw, Zpw, Xd, Yd, and Zd were detrended by 
subtracting the mean. This removed the dc 
component from the signals.  

2. Because the total dynamic time warping cost 
between training and test time series is sensitive to 
the length of the time series (i.e., the number of data 
points in the time series), we ensured the time series 
were of equal length (i.e., we made the number of 
data points in each time series equal by padding 
zeroes at the end). The longest action took 360 data 
points, i.e. equal to 18 seconds.  

Training Set: We chose data of 13 random subjects for 
creating the training dataset. Each subject had 10 samples for 
activity-1 and another 10 templates for activity-2, with an 
exception of one subject who had 9 samples for both activities. 
Therefore, in total, the training dataset had 129 samples to 
model activity-1 and activity-2.  

Test Set: The test set had samples from 12 subjects (who 
were different from those used in training). Therefore, the test 
constituted 120 samples for each of the activities. 

Identification: We used dynamic time warping (DTW) [13] 
to classify whether a test sample belongs to activity-1 or to 
activity-2. DTW is a classical technique for comparing two 
timeseries, by essentially finding the minimum warp distance, 
which is the distance between the two time series when they 
are “optimally” aligned. The alignment allows for measuring 
the similarity between timeseries that possibly vary in time or 
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had similar hand movement signals during drinking water in 
both activities. 

 

TABLE I.  IDENTIFICATION RESULTS 

Sensor Axis True Positive Rate False Alarm Rate 

Xpw 0.9583 0.1667 

Ypw 0.8833 0.9167 

Zpw 0.9833 0.3750 

Xd 0.0417 0.0083 

Yd 0.0417 0.0083 

Zd 0 0.0167 

All fusion 0.8417 0.1333  

 

IV. DISCUSSION AND CONCLUSION 

The study demonstrated that tri-axial accelerometers worn 
on both wrists could be used to identify solid-phase 
medication intake using hand movement gestures. The reason 
for choosing the two activities discussed in Section II was that 
our preliminary studies showed that the patterns of the hand 
gestures related to tasks such as scratching/rubbing nose, head 
and mouth are very different from pill taking patterns – hence, 
unrealistically easy to differentiate. On the other hand, 
gestures associated with wiping one’s mouth are similar to 
those of medication intake. Other activities, such as bringing 
food to the mouth may potentially be similar to medication 
intake. Hence, further investigations and experiments are 
required to demonstrate that the difference between 
medication intake activity and other similar activities is 
sufficient for distinguishing between them. 

Although the subjects were asked to take medication in a 
manner comfortable to them, and were asked to alternatively 
perform the two activities, all of the subjects performed 
consistently and did not change hands between the trials.  
Visual observation and correlation analysis shows that wrist 
movement patterns did not change from one trial to another. 
Further observations showed that even if classification of 
activities over the whole population fails, we can still train the 
classification system on individual users.  

DTW has shown promise in our experiments. However, 
DTW has three drawbacks: (1) it allows comparison of only 
two time series; (2) has a high computational cost; and (3) 
does not allow for sample and feature weighting. In our future 
work, we will use Generalized Time Warping [20] to 
circumvent the above drawbacks. 
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