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Abstract— In hyperconnectivity scenario, managing the
amount of data acquired from sensors in the Body Area
Networks (BANs) is one of the major issues. In this paper
we propose an on-chip context predictor based sparse sensing
technology with smart transmission architecture which makes
use of confidence interval calculation from the features that
present in the data, thereby achieving statistical guarantee.
The proposed architecture uses intelligent sparse sensing, which
eradicates the collection of redundant data, thereby reducing
the amount of data generated. For the performance analysis,
we considered ECG data acquisition and transmission system.
The proposed architecture when applied on the data collected
from 10 patients reduces the duty cycle of the sensing unit to
27.99%, by achieving an energy saving of 72% and the mean
deviation of sampled data from the original data is 2%.

I. INTRODUCTION

Trending development in the Internet of Things (IoT)

enabled applications realizes the hyperconnectivity scenario

much sooner than the predictions. In such cases one of

the primary concern relates to the data management. Due

to continuous monitoring of the physiological parameters,

the amount of data generated is very huge. This huge

collection of data results into improper data management

in hyper connectivity scenario [1], [2]. In this paper we

address this issue by proposing an on-chip by which we

mean an on-sensor node context predictor based intelligent

sparse sensing mechanism along with smart transmission

based which can greatly reduce the duty cycle of the system

thereby reducing the amount of data generated. The proposed

architecture reduces the sensing of unnecessary data without

losing statistical guarantee in the data collected.

Computation capabilities in wireless sensors associated

embedded systems impose a big challenge in wireless sensor

networks. The trade-offs between limited computation and

battery power, precision and accuracy of data and delay in

discovery of events would need to be balanced and adjusted

depending on the applications. Battery may be conserved in

different stages of information processing within the systems,

from adaptive sampling, processing, to networking and de-

livery of the data. We have to make sure that the developed

processing techniques on the node are low complex and low

power for enabling ubiquitous operation of the device.
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Most adaptive sampling algorithms developed mainly aim

for conserving power for a particular type of application.

For example, an adaptive sampling algorithm for rare-event

detection has the characteristics of sampling more often when

an event is likely to happen [3]. This cannot be directly

applied to the health monitoring applications as we wish

to obtain sensible statistics of the data in the experiments.

Moreover, an useful sampling strategy should incorporate

data characteristics in the design of the algorithm in order to

preserve the features present in the data collected. Therefore,

in this paper, we aim for preserving features that have to be

present in the health care data collected. These characteristics

will affect the decisions on the choice of adaptive parameters

including sampling intervals, frequency of adaptation, and so

on.

For the performance analysis of the proposed architecture

we have considered ECG data acquisition and transmission

system which can communicate using ZigBee. The per-

formance metrics used are the mean deviation, data rate

generated and energy consumption. The rest of the paper

is organized as follows. Section II discusses the functional

units of the proposed architecture. In section III, the per-

formance of the proposed architecture is analyzed. Section

IV concludes the paper by briefly summarizing the proposed

methodology.

II. PROPOSED ON-CHIP CONTEXT PREDICTOR BASED

INTELLIGENT SPARSE SENSING AND SMART

TRANSMISSION ARCHITECTURE

The proposed architecture of on-chip context predictor

based intelligent sampling and transmission for remote health

monitoring applications is shown in Fig. 1. The main idea

behind the sparse sampling is to reconstruct the original

signal from fewer samples. What is most remarkable about

these sampling protocols is that they allow a sensor to very

efficiently capture the important information required that is

present in a sparse signal [4]. ECG data in general consists

of important features such as PR, QRS and QT intervals. The

proposed architecture mainly aims to capture these features

by collecting minimum amount of samples. Rest of the

sections briefly describe the functional units of the proposed

on-chip context predictor based intelligent sparse sensing

mechanism along with smart transmission.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 4151



Transmitter

Extraction

Feature

Predictor

Context

Pre-processing block

Adaptive

Engine
Rule

Sensing

Unit

Fig. 1: Proposed on-chip context predictor based intelligent

sparse sensing and smart transmission Architecture

A. Pre-processing blocks

The pre-processing block includes the sensing unit which

acquires the medical data from sensors using noise removal

signal processing techniques and feature extraction which

extracts the important features from the collected data. Many

architectures for the data acquisition system have been devel-

oped in the past [5], [6] & [7]. In this paper for the analysis

of performance, Lead I ECG data is considered. The sensing

unit which is developed in IIT Hyderabad, has a lower

cutoff frequency of 0.5 Hz and an upper cutoff frequency

of 120 Hz with a sampling rate of 1000 Hz. Better proactive

diagnosis can be given only if the data collected from the

patient is classified properly. This intelligent classification

can be achieved by extracting important features from the

collected data, from which we can discover the abnormalities

in the patient. This process of collecting features from the

patients physiological data is termed as feature extraction.

Feature extraction plays an important role in automating

the remote health monitoring. Features like P, Q, R, S and

T points shown in Fig. 2 from the Lead I ECG signal

plays a prominent role in classifying the data collected from

the patient. For a detailed description of several feature

extraction algorithms available, kindly refer to [8], [9] &

[10]. Using these extracted features the intervals shown in

parameters column of TABLE I are calculated and fed to

the on-chip context predictor. TABLE I shows the important

features that are present in ECG signal and their normal

threshold values for a healthy patient.

Case Parameter Normal Threshold

1 PR interval 0.12 - 0.20 Sec
2 QRS interval ≤ 0.12 Sec
3 QT interval ≤ 0.42 Sec

TABLE I: Threshold values of the features present in ECG

signal

B. On-chip context predictor

The on-chip context predictor aids for controlling the

sampling rate of sensing unit by predicting the context of

the patient. It makes use of the confidence interval calculated
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Fig. 2: PQRST complex from the collected Lead I Digital

ECG data

over the features extracted from the collected data. If the

confidence interval meets the expected threshold it stops

sampling, thereby reducing the duty cycle of the system.

In [11], Parkin et al. have investigated five methods of

calculating confidence intervals (CI) for the mean of a log-

normally distributed variable and concluded that the method

developed by Land [12] was the best at estimating the lower

(LCL) and upper confidence limits (UCL) for small number

of samples and are given by

LCL = exp

{

µ̄+
σ̂2

2
+

σ̂CL
√

n− 1

}

(1)

UCL = exp

{

µ̄+
σ̂2

2
+

σ̂CU
√

n− 1

}

(2)

Where CL and CU are H-statistic parameters calculated

from a function that depends on the number of observations

(n), the standard deviation of the log-transformed values (σ̂)

and the significance level α selected. The values of CL and

CU used in this paper are based on 98 percentile values of

the methods and tables in [11], [12]. Equation (1) and (2)

are used in the calculation of CI of data in context predictor

which is given by

CI = UCL− LCL (3)

From the analysis made on ECG data collected from

different patients, the features tend to follow log-normal

distribution which is the case in most of the physiological

signals. Every time the pre-processing block switches on, it

collects the data for 8 seconds and the features corresponding

to the data collected are fed to the context predictor. The con-

text predictor calculates the confidence interval for mean of

the features and compares it with threshold. If the threshold

is not exceeded, it forces the pre-processing block into sleep

state for some fixed duration. The sampling duration has to

be chosen based on the wake up time of the sensors. The

ECG sensors in general have a very less wake up time, which

makes the 8 seconds sampling interval a reasonable selection.

If in the first phase, the confidence interval has exceeded

the threshold, the pre-processing block again samples for 4
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Fig. 3: Flow of on-chip context predictor in different scenar-

ios

seconds. Now the context predictor calculates the CI on the

features extracted from the complete 12 seconds interval and

based on the value of CI, it re-decides on the sampling.

Possible reasons behind the calculated CI exceeding be-

yond the threshold are improper electrode contacts, which

generate incorrect features or the person might be suffering

from myocardial infarction (heart attack), whose PR, QRS

and QT intervals fluctuate rapidly for about 30 min. In such

cases, if the convergence of the CI below the threshold is

happening at a very long period, it can be considered as

a myocardial infarction and the system triggers an alarm

indicating for a proactive diagnosis. The complete flow of

the context predictor is depicted in Fig. 3.

C. Adaptive Rule Engine

The on-chip adaptive rule engine based smart transmission

mechanism classifies the data collected and decides whether

the data is worth transmitting or not. Using this mechanism

the transmission can be made smart which reduces the

amount of data to be transmitted thereby reducing the en-

ergy consumption. Performance analysis of the adaptive rule

engine based smart transmission system has been analyzed

in [5]. In [5], the authors have considered remote ECG

monitoring system with ZigBee communication facility. The

inputs to the adaptive rule engine are the features extracted

from the collected medical data. In ECG, these features

primarily include PR interval, QRS interval and QT interval.

Adaptive rule engine consists of ”decision making” section

and ”transmitter control” section, decision making section

analyzes the features extracted from the collected data and

decides whether to transmit or not. The transmitter control

section triggers the transmitter and starts transmission, if the

data is to be transmitted. For further details on the adaptive

rule engine based smart transmission mechanism, one can

refer to [5].

III. PERFORMANCE ANALYSIS

For the performance analysis of the proposed architecture

ECG data collected from 10 patients using the in house

developed ECG data acquisition unit is used and the metrics

used for the analysis are duty cycle, mean deviation, data

rate generated and energy savings. The analysis makes use

of 30 seconds of ECG data collected from every patient due

to the reason that in all the cases the CI has converged within

30 seconds. Fig. 4 shows the original ECG signal collected

from the patient and the sampled signal obtained by using the

proposed architecture. From the Fig. 4, one can observe the

sleep time achieved by using the on-chip context predictor

based intelligent sampling. On an average of 30 seconds

over 10 patients, the duty cycle of the system is observed to

be 27.99%. Fig. 5 shows the mean of PR interval extracted

from the original signal of 30 seconds duration and sampled

signal obtained by the proposed architecture from the original

signal. The average deviation of features extracted from the

sampled signal compared to the features extracted from the

original signal, taken over all the 10 patients is observed to

be 0.0032 seconds which is a negligible deviation. Hence the

proposed architecture also provides the statistical guarantee.

The proposed architecture also aids for the reduction in the

network traffic by reducing the amount of data generated.

Fig. 6, shows the amount of data generated for all the 10

patients for period of 30 seconds when using the on-chip

context predictor based intelligent sampling. On an average,

there is a 72% of reduction in the amount of data generated,

which is a significant reduction in IoT scenario.

Fig. 7, shows the energy saving obtained for each patient.

The energy saving obtained for patient 2 is lesser when

compared with other patients, due to the slower convergence

of the confidence interval. An average of 72% energy saving

over 10 patients for the sensing unit has been obtained by

using the proposed intelligent sparse sensing architecture,

which is a significant amount of saving.

IV. CONCLUSIONS

In this paper we proposed an on-chip context predictor

based intelligent sparse sampling and smart transmission

architecture for IoT enabled remote health monitoring appli-

cations. The proposed architecture greatly aids for achieving

a significant reduction in the duty cycle of the system thereby

reducing energy consumption and the amount of data rate

generated while maintaining the statistical guarantee of the

data collected. This architecture when analyzed on the ECG

data collected using the in house developed ECG data acqui-

sition system at IIT Hyderabad from 10 patients, achieved a

duty cycle of 27.99% and 72% of reduction in data generated

on an average taken over a 30 seconds interval. On an

average over 10 patients, the proposed architecture achieved

an energy saving of 72%, which is a significant amount of

saving in remote health monitoring applications.
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Fig. 4: Original and sampled signals
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Fig. 5: Mean of PR interval over 30 sec interval for original

and sampled signals

The analysis shown above is also performed using the

ECG data from ”The PTB Diagnostic ECG Database” [13],

[14], which also yielded the similar performance.
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