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Abstract— Error-related potentials (ErrP) have been recently
incorporated in brain-machine interfaces (BMIs) due to its
ability to adapt and correct both the output of the BMI or
the behavior of the machine. Most of these applications rely on
synchronous tasks with different user’s evaluations associated to
correct and wrong events. Asynchronous detection during the
continuous evaluation of the task, however, has to cope with
background noise and an increased number of misdetections
common in event-related potential detection. This paper studies
a different characteristic that may carry additional information
to be exploited by asynchronous ErrP detectors: brain connec-
tivity coherence patterns appearing while the user monitors
the continuous operation of a device. The results obtained
with five subject revealed the presence of an error potential
in an asynchronous reaching task an showed an increase in the
coherency within the theta band.

I. INTRODUCTION

EEG-based error-related potentials [1]-[3] have received
increasing attention in the last years in the field of brain-
machine interfaces (BMIs) [4]. These potentials are gen-
erated as a result of a mismatch in the user’s expected
outcome of a task event and the actual one [2]. Since the
first work suggesting that they could be detected in single
trials [5], they have been successfully used within several
BMI applications, such as for the correction of BMI outputs
[6], classifier adaptation [7] or for learning sequential tasks
(81, [9].

All the previous applications rely on the detection of
these potentials using the raw temporal signal (i.e. the
amplitude and latency of the ErrP at several channels), which
in principle would encode different values for correct and
wrong events evaluated by the user. Furthermore, they rely
on discrete tasks, where the signals were detected in a
synchronous fashion. A recent work has shown that it is
possible to asynchronously detect errors during tasks where
a device performs continuous trajectories using ECoG [10].
In this asynchronous setting, there are no explicit correct
events since the device is continuously moving. Instead, the
error has to be distinguished from the background noise.
However, as EEG suffers from lower signal-to-noise ratios
a non-negligible number of false detections is expected, as
indeed happens when classifying other EEG potentials [11].

Consequently, there is a growing research interest in ex-
ploring alternative neural correlates of error-related potentials
that provide extra information to boost or strengthen the
decoders. For instance, error potentials are known to have an
associated event-related synchronization in theta band [12]
that has been exploited to improve detection rates [13].

Similarly, connectivity features such as coherence have
recently proven to be an alternative to temporal and power-
spectra features power ones, by offering an additional source
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Fig. 1. Experimental protocol with the device colored in blue and the
three possible trajectories (green lines). (b) Example of correct trajectory.
(c) Example of an erroneous trajectory.

of information for the classification of ErrPs [14]. These
features aim at exploiting the fact that error processing
involves the communication between different brain neural
sources rather than being generated within a single region
[15].

In this paper, we study coherence patterns to characterize
the brain connectivity in an asynchronous setup where the
user evaluates the performance of a device during continuous
trajectories. The results obtained for 5 subjects reveals the
presence of an error potential in an asynchronous task, and
shows an increase in the coherency within the theta band.
Furthermore, phase slope indexes suggest that the signal
propagates from central to parietal brain regions.

II. METHODS
A. Data Recording

Electroencephalographic (EEG) and electrooculographic
(EOQG) activity was recorded using a gTec system consisting
of 32 electrodes distributed according to an extended 10/20
international system (FP1, FP2, F7, F8, F3, F4, T7, T8,
C3, C4, P7, P8, P3, P4, O1, 02, AF3, AF4, FC5, FC6,
FC1, FC2, CP5, CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and
Oz), with the ground on FPz and the reference on the left
earlobe; for the EOG, 6 monopolar electrodes were recorded
(placed above and below each eye, and from the outer canthi
of the left and right eyes), with the ground on FPz and
the reference on the left mastoid. EEG and EOG signals
were digitized with a sampling frequency of 256 Hz, power-
line notch filtered at 50 Hz and high-pass filtered at 0.5
Hz. Additionally, the horizontal, vertical, and radial EOG
were computed to remove the EOG from the EEG using a
regression algorithm [16]. The data acquisition and on-line
processing was developed under a self-made BCI platform.

B. Experimental Setup

The visual protocol consisted in a blue ball (device)
that performed continuous trajectories towards one of three
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possible fixed targets spotted at the top of the screen at left,
center and right sides. The possible targets were represented
as squares of dashed lines, and the current target was filled in
blue (see Figure 1). The device always started at the bottom-
center of the screen. Once a trajectory began, the ball moved
continuously towards one of the targets executing a correct
or wrong movement, with 70% and 30% of probability
respectively. Correct trajectories for each target are shown
in Fig. la. Erroneous trajectories start as correct ones but
undergo an instantaneous change of direction, (Figure 1c) at
a random point in time after the splitting point.

Five healthy right-handed male subjects (mean age 27
years) voluntarily participated in the study recorded in a
laboratory of the University of Zaragoza. Participants were
seated on a comfortable chair approximately one meter
away from a computer screen where the visual protocol was
displayed. Users freely chose one of the three possible targets
to reach via three buttons and later observe the trajectories
performed by the device continuously evaluating them as
correct or erroneous among the whole path to its destination.
The users rested as much as needed between targets. Each
session was organized in 8 repetitions of 30 movements each,
obtaining around 160 correct and 80 erroneous trajectories.
Total time per repetition was approximately 4 minutes, plus
a break of few minutes between them making the whole
duration of the experiments around 45 min per subject.

C. Connectivity measures

In order to estimate connectivity measures between the dif-
ferent areas of the brain we computed the coherence (COH)
based on multivariate autoregressive (MVAR) models. Let
X(t) = [x1(t), 22(t), ..., zx(t)]" denote the EEG recording
of k channels at time ¢. The MVAR process can be described
as:

p
X(t) =Y A@)X(t—i)+ Et) (1)

i=1
where E(t) = [ei(t),ea(t),...,ex(t)]T is a vector of
multivariate zero-mean uncorrelated white noise process,
A(1), A(2),...A(p) are the k x k matrices of model coef-
ficients and p is the order of the model, which in this study
was chosen by the Akaike Information Criterion (AIC) [17]
resulting in a p = 11 order model. Once a MVAR model
is estimated, the process of Eq (1) is transformed to the

frequency domain:

ANHX(f) = E(f) 2)
X(f)=AYNHE) = H(E) 3)
where
A(f) =) A(k)eI2miatk &)
k=0

Here H(f) is the transfer matrix of the model, whose
element H;;(f) represents the connection from channel j to

channel ¢ at a frequency f. Using this expression we can
derive different connectivity measures. For this study, the
cross-spectral density (S) is obtained by:

S(f) = H(HZH(H)" (5)

From here, the coherency (CHY) is the cross spectral den-
sity function normalized by individual auto spectral density
functions, and can be calculated as:

Sii (f)

CHY(f) = == (6)
! Sii(f)S55(f)
where the coherence (COH) is its absolute value
Sii

Sii ()55 (f)
and from the imaginary part of the coherency, we can

compute the phase slope index (PSI) as a measure of the
information flow [18]:

PSI;(f) = S(>_ CHY;;(f)CHY;(f +6f) (8
fer

D. Analysis of continuous error evaluation

Coherence patterns were computed using a time window
of 800 ms starting at the abrupt change of direction for erro-
neous trajectories and at the splitting point for correct ones
(Figure 1). The MVAR model and corresponding coherence
measures were computed for each condition between all pairs
of channels (i.e. 991 coherence values). In order to minimize
volume conduction effects, coherence was analyzed in terms
of statistical differences between error and correct trajec-
tories and displayed at three frequency ranges (theta (3-7
Hz), alpha (8-12 Hz) and low beta (12-15 Hz)). In order
to average coherence values between subjects the z-Fisher
transformation was used. A Wilcoxon rank sum test was used
to find the most significant connections between channels at
each frequency band and results were plotted in connectivity
maps for each channel.

The time evolution of coherence [19] in the theta band
(most discriminant band between error and correct events)
was analyzed. The EEG data was divided in epochs of 500
ms, sliding in steps of 50 ms resulting in a 90% overlap. Sig-
nal was standardized for every sliding window (subtracting
temporal mean and dividing by the standard deviation) and
the difference between error and correct coherence was com-
puted for the most significantly different pairs of channels.
For comparison purposes, the grand averaged signals were
computed for the error and correct conditions at channel FCz
[8]. Event-related synchronizations (ERS) were calculated in
a time window of -1500 to 1500 ms using Morlet wavelets,
with a wavelet-width of 12 cycles. The signal corresponding
to a window of time between -1500 to -500 ms before the
occurrence of the event was used as baseline activity. A
statistical significance test based on bootstrapping was run
over the ERSs following the method described in [20].

3998



theta band (3-7)Hz

alpha band (8-12)Hz

lower beta band (12-15)Hz

] e TT 1T R ET
4 cprs H cps I
o T8 TS
2 o I o4
& FCs FCs
x F8 F8
£ 0 R rStn=
& =1
g F‘Eg = F‘E ] =
3 cr2 iRl cP2 I}r =
@® CPz = CPz i R
g & T b4 A f D
FC2 S F‘:zﬂ#( =T oty i
e = R 1K
FC1 ] - —
8 & 5] == ma = Ness
44 vz 17K = /@b i SR ’“
B W t pdis AT S ]
[ z ST N ¢ a e \
& c3 S ca N — ca
e LA 74l i ] S %ﬁ kY s
| 4 TN i 24 X [24 TASET
E AR s LR < 3] PRED) N s ]
8§I§§Q§EIE§SN§S§D§§§§'QE 31853?‘.‘5 cE§§§§3Iiﬁﬁﬂgsgﬁ‘§§§:‘,385185335 RQISEAQ 315%9?§S§D§§§!‘933§18§l£5
RIGHT HEMISPHERE CENTRALREGION  LEFT HEMISPHERE RIGHT HEMISPHERE CENTRALREGION  LEFT HEMISPHERE RIGHT HEMISPHERE CENTRAL REGION  LEFT HEMISPHERE
I B |
-0.1 -0.05 0 0.05 0.1

Fig. 2. Fisher-Z transformed coherence patterns of the difference between error and correct conditions for the three different frequency bands. Channels

are ordered from occipital to frontal and from right to left brain hemispheres.
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Fig. 3. Results of coherence connectivity maps for the comparisons between the error and correct conditions for each subject at the theta frequency band.
Connections depicted in red indicate higher values. Figure is best view in color.

Finally, the phase slope index values between channels
were calculated for all electrode pairs for the theta band with
frequency resolution 1 Hz and a time window of 500 ms. The
PSI was computed at two different instants of time, one at
-500 ms, when the error has not been presented, and other at
600 ms corresponding with the interval of time that contains
the principal oscillation of the ErrP.

III. RESULTS

Figure 2 displays the averaged coherence patterns during
the evaluation of the erroneous stimuli in the 800 ms window.
Here, it is evident an increase of coherence distributed into
the fronto central and parietal channels at the theta frequency
band, as suggested in previous works [12], [14]. Additionally,
the averaged coherence also revealed significant connectiv-
ity patterns between hemispheres, and to a lower degree,
between frontal and parietal areas, despite the large inter-
subject variability (see figure 3 for the most significant
coherences according to the Wilcoxon rank sum analysis
(p < 0.05) for each subject at the theta frequency band).

Figure 4 shows the temporal evolution of the grand aver-
age for the error and correct conditions, the event-related
synchronization and the difference (error minus correct)
coherence for the most significant electrode pairs at the
theta band. As can be seen, an error potential appeared
after the sudden change of direction (0 ms) following the
standard characterization described in previous studies [8].
Similarly, the time-frequency ERS shows a power increment
in the theta band for the time window between 0 and
1000 ms [12]. Focusing in the coherency, the five most
representative pairs among subjects (CPz-CP1, Cz-C4, Cz-
CP6,Pz-P4 and FCI1-CP6) plus one randomly chosen of

the non-representative electrode combinations(C4-FP1) are
shown. Clearly, the coherence between electrode pairs of
fronto-central and parietal brain regions increases for the
window of time -200 to 500 ms when users are evaluating
an error, whereas random coherence values remain very low
during the entire trajectory.

Finally, Figure 5 depicts the phase slope index values at
-500 and 600 ms. As expected, the phase of the different
combinations of channels in a given instant of time before
the occurrence of the error does not follow a distinguished
pattern. On the other hand, looking at the representation
obtained from the temporal window that cover the stimuli,
there exist a pattern that situate fronto-central channels as the
drivers of the error potential, and indicates how the signal
propagates towards the parietal areas of the brain.

IV. CONCLUSIONS AND FUTURE WORK

This paper has shown the existence of an error potential
during continuous and asynchronous tasks, and describes
the associated brain connectivity based on coherency mea-
sures during error evaluation. We studied coherence changes
between 32 electrode combinations, detecting significant
increment of coherence between fronto-central and parietal
sites at theta frequency band. Furthermore, the phase slope
index analysis suggest that the flow of the signal travels
from frontal areas (Fz) towards fronto-central and parietal
ones. The maximum of coherence difference between correct
and erroneous responses reaches its maximum around 600
ms after the error, which coincides with the larger negative
and positive peaks in amplitude of error responses. Future
experiments will study how to use coherence measures
for feature extraction in order to detect ErrPs in on-line
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Fig. 4. From top to bottom: topographic representation of the most relevant
peaks. Grand average of the signal at channel FCz. Time-frequency plots
on channel FCz (red and blue represent significant ERS/ERD). Coherence
evolution for sliding windows of 500 ms for the five-most representative
electrode pairs and a random non-representative pair.
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Fig. 5. Averaged Phase Slope Index for all pairs of channels on
theta frequency band at -500 and 600 ms from the onset. The ith small
topographic plot is located at the ith electrode pose, as indicated by the ith
row of the matrix PSI;;. Red color represent outflow and blue color stands
for inflow transference of information.

applications, or to study brain connectivity for erroneous
actions where the onset of the event is not clearly presented.
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