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Abstract— Steady-state visual evoked potential 
(SSVEP)-based brain-computer interfaces (BCIs) have potential 
to realize high-speed communication between the human brain 
and the external environment. Recently, multiple access (MA) 
methods in telecommunications have been introduced into the 
system design of BCIs and showed their potential in improving 
BCI performance. This study investigated the feasibility of 
hybrid frequency and phase coding methods in multi-target 
SSVEP-based BCIs. Specifically, this study compared two 
hybrid target-coding strategies: (1) mixed frequency and phase 
coding, and (2) joint frequency and phase coding. In a simulated 
online BCI experiment using a 40-target BCI speller, BCI 
performance for both coding approaches were tested with a 
group of six subjects. At a spelling speed of 40 characters per 
minute (1.5 seconds per character), both approaches obtained 
high information transfer rates (ITR) (mixed coding: 
172.37±28.67 bits/min, joint coding: 170.94±28.32 bits/min) 
across subjects. There was no statistically significant difference 
between the two approaches (p>0.05). These results suggest that 
the hybrid frequency and phase coding methods are highly 
efficient for multi-target coding in SSVEP BCIs with a large 
number of classes, providing a practical solution to implement a 
high-speed BCI speller. 

 

I. INTRODUCTION 

Recently, the steady-state visual evoked potential 
(SSVEP)-based brain-computer interface (BCI) has attracted 
much attention for its advantages such as little user training, 
ease of use, and high information transfer rate (ITR) [1, 2]. In 
SSVEP-based BCIs, users are asked to fixate on one of 
multiple visual flickers tagged with different stimulation 
properties (e.g., frequency), and a gazed target can be 
identified through analyzing the SSVEPs elicited by the target 
stimulus. Currently, frequency coding and phase coding are 
the two most popular approaches to implement multi-target 
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coding with SSVEPs. In BCIs using frequency coding, all 
stimuli flicker simultaneously at different frequencies [3-5]. In 
BCIs using phase coding, visual stimuli typically comprise 
multiple flickers at the same frequency but with different 
initial phases [6-8]. 

The stimulus coding method plays an important role in 
SSVEP-based BCIs [1, 2]. Recently, multiple access (MA) 
methods in telecommunications have been introduced into the 
system design of BCIs and showed their potential in 
improving BCI performance [9]. Typical MA methods such as 
time division multiple access (TDMA), frequency division 
multiple access (FDMA), code division multiple access 
(CDMA), and space division multiple access (SDMA) have 
been applied to BCIs using different EEG signals. In 
telecommunications, hybrid frequency and phase coding, 
which implements simultaneous frequency and phase coding 
in a multiple-access channel, has been proved more efficient 
than the frequency or phase only coding methods [10, 11]. The 
discriminability of SSVEPs could be improved by 
incorporating frequency and phase features in a similar way. 
Currently, hybrid frequency and phase coding for 
SSVEP-based BCIs has been rarely studied. Jia et al. [12] 
developed a mixed frequency and phase coding method to 
increase the number of classes in an SSVEP BCI. In their 
study, 15 targets were coded by 3 frequencies (10Hz, 12Hz, 
and 15Hz) and 4-6 phases (10Hz: 6 phases, 12Hz: 5 phases, 
15Hz: 4 phases) under a 60Hz refresh rate. The system 
obtained an ITR of 66 bits/min in a simulated online test, 
showing the potential of hybrid frequency and phase coding in 
improving BCI performance. Since many applications of 
electroencephalogram (EEG)-based BCIs are greatly hindered 
by their communication speeds [9], it is of great importance to 
explore the capacity of hybrid frequency and phase coding in 
implementing a high-speed BCI. 

Currently, a major challenge in implementing hybrid 
frequency and phase coding of SSVEPs is to present a large 
number of visual flickers on a computer monitor. The numbers 
of frequencies and phases that can be rendered on a monitor 
are always limited by the refresh rate since the number of 
frames in a stimulation cycle needs to be a constant and the 
number of phases can be realized is equal to the number of 
frames per cycle [12]. In this case, the mixed frequency and 
phase coding method can only realize a very limited number 
of classes. In [13], we proposed an approximation method to 
realize visual flickers with a high frequency resolution (e.g., 
0.25Hz) using a computer monitor. Recently, we further 
proved that the phase of the SSVEPs elicited by the 
approximation approach was stable across different 
frequencies [14]. Therefore, the approximation approach can 
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by frequency detection. However, detection accuracy can be 
improved by incorporating the embedded phase information. 

B. BCI Speller 

This study designed a 40-target BCI speller using the two 
hybrid frequency and phase coding approaches. As shown in 
Fig. 1, the user interface is a 5×8 stimulus matrix containing 
40 characters (26 English alphabets, 10 digits, and four other 
symbols). Stimuli were presented on a 23.6-inch LCD screen 
with a resolution of 1920×1080 pixels using a 60Hz refresh 
rate. Each stimulus was presented within a 140×140 pixels 
square and the distance between two adjacent stimuli was 50 
pixels. The stimulus program was developed under MATLAB 
(MathWorks, Inc.) using the Psychophysics Toolbox [15].  

Fig. 2 illustrates the frequency and phase values used for 
each target. As shown in Fig. 2(a), 40 targets were specified by 
eight frequencies (8-15Hz with a 1Hz interval) and five phases 
(0, 0.4π, 0.8π, 1.2π, and 1.6π) in the mixed frequency and 
phase coding paradigm. The jointing coding paradigm used 40 
frequencies (8-15.8Hz with a 0.2Hz interval) and the phase 
interval between two adjacent frequencies was 0.5π (Fig. 
2(b)). Note that optimal selection of phase interval is out of the 
scope of this paper and will be investigated in another study.  

C. Data Acquisition 

Six healthy subjects (4 females, aged 25-27 years) with 
normal or corrected-to-normal vision participate in the 
experiment. All participants were asked to read and sign an 
informed consent form before participating in the experiment.  

EEG data were acquired using a Synamps2 system 
(Neuroscan, Inc.) at a sampling rate of 1000 Hz. Nine 
electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) 
were placed over parietal and occipital areas according to the 
international 10-20 system. The reference electrode was 
placed at the vertex. Electrode impedances were kept below 
10 kΩ. During the experiment, subjects were seated in a 
comfortable chair in a dimly lit soundproof room at a viewing 
distance of approximately 70 cm from the monitor. 

This study designed a simulated online BCI experiment 
[12]. For each subject, 10 mixed-coding blocks and 10 
joint-coding blocks were interleaved, resulting in a total of 20 
blocks. Each block contained 40 trials corresponding to all 40 
targets indicated in a random order. Each trial lasted 1.5 
seconds, including 1 second for visual stimulation and 0.5 
second for gaze shifting. Each trial began with a visual cue (a 
red square, see Fig. 1) indicating a target stimulus. Subjects 
were asked to shift their gaze to the target as soon as possible 
within 0.5 second. At 0.5 second after the cue onset, all 40 
stimuli started to flicker for 1 second concurrently. To 
facilitate visual fixation, a red triangle appeared below the 
flickering target during the stimulation period. 

D. Data Analysis 

The EEG data were first down-sampled to 250Hz. For 
each target, 10 trials were extracted according to event triggers 
generated by the stimulus program, resulting in 400 trials for 
each coding approach. In each trial, 9-channel SSVEP data 
epochs corresponding to the 1-second stimulating duration 
were extracted for target identification. All data epochs were 
band-pass filtered from 7Hz to 70Hz using an infinite impulse 
response (IIR) filter. 

This study adopted an extended canonical correlation 
analysis (CCA)-based method for target identification [16]. 
Training SSVEP reference signals ࢄ෡  can be obtained by 
averaging multiple trials in a training set. Correlation 
coefficient between projections of test set ࢄ  and training 
reference signals ࢄ෡	using CCA-based spatial filters can be 
used to identify a target. Specifically, three canonical 
coefficients including (1) ࢄࢃሺࢄࢄ෡ሻ  between test set ࢄ  and 
training reference signals ࢄ෡, (2) ࢄࢃሺࢅࢄሻ between test set ࢄ 
and sine-cosine reference signals	ࢅ, and (3) ࢄࢃሺࢄ෡ࢅሻ between 
training reference signals ࢄ෡ and sine-cosine reference signals 
 .are used as spatial filters for improving the SNR of SSVEPs ࢅ
The target can be identified by recognizing the training 
reference signal that maximizes the correlation coefficient. 
Although the standard CCA-based method cannot 
discriminate different phases, the canonical correlation 
between ࢄ and ࢅ still contributes to frequency detection. A 
correlation vector ߩ is defined as follows: 

࣋ ൌ ቎

ଵߩ
ଶߩ
ଷߩ
ସߩ

቏ ൌ

ۏ
ێ
ێ
ێ
ۍ
,ሻࢅࢄሺࢄࢃ்ࢄሺߩ ሻሻࢅࢄሺࢅࢃ்ࢅ

,෡ሻࢄࢄሺࢄࢃ்ࢄ൫ߩ ෡ሻ൯ࢄࢄሺࢄࢃ෡்ࢄ

,ሻࢅࢄሺࢄࢃ்ࢄ൫ߩ ሻ൯ࢅࢄሺࢄࢃ෡்ࢄ

,ሻࢅ෡ࢄሺࢄࢃ்ࢄ൫ߩ ےሻ൯ࢅ෡ࢄሺࢄࢃ෡்ࢄ
ۑ
ۑ
ۑ
ې

          (4) 

where ߩሺܽ, ܾሻ indicates the correlation coefficient between ܽ 
and ܾ . An ensemble classifier can be used to combine 
decisions from the four methods described above. In practice, 
the following weighted correlation coefficient ߩ෤ is used as the 
final feature for target identification: 

෤ߩ ൌ ∑ signሺߩ௜ሻ
ସ
௜ୀଵ ∙ ௜ߩ

ଶ                                         (5) 

where signሺሻ  is used to remain discriminative information 
from negative correlation coefficients. The training reference 
signal that maximizes the weighted correlation value is 
selected as the reference signal corresponding to the target. 

E. Performance Evaluation 

This study used a leave-one-out cross-validation to estimate 
BCI performance in the simulated online experiment. In target 
identification, training reference signals were obtained from 
the training data in cross validation. This procedure was 
performed on mixed-coding and joint-coding datasets 
separately. Classification accuracy and simulated online ITR 
[12] were used for a direct comparison between the two 
methods. To further explore the interaction between BCI 
performance and stimulation frequency, this study also 
calculated the accuracy for each stimulation frequency. 

III. RESULTS 

Table I lists the classification accuracy and simulated online 
ITR for all subjects. The ITRs for both approaches (mixed 
coding: 172.37 bits/min; joint coding: 170.94 bits/min) were 
significantly higher than ITRs reported in previous SSVEP 
BCIs [2, 12]. To be noticed, subjects S2 and S4 obtained ITRs 
around 200 bits/min. ITRs were relatively stable across 
subjects (mixed coding: 139.54-207.53 bits/min; joint coding: 
130.34-200.85 bits/min). For classification accuracy and ITR, 
there was no statistically significant difference between the 
two approaches (paired t-test, p>0.05).  
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