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Abstract— Stroke remains a leading cause of disability, limiting 

independent ambulation in survivors, and consequently 

affecting quality of life (QOL). Recent technological advances in 

neural interfacing with robotic rehabilitation devices are 

promising in the context of gait rehabilitation. Here, the X1, 

NASA’s powered robotic lower limb exoskeleton, is introduced 

as a potential diagnostic, assistive, and therapeutic tool for 

stroke rehabilitation. Additionally, the feasibility of decoding 

lower limb joint kinematics and kinetics during walking with 

the X1 from scalp electroencephalographic (EEG) signals – the 

first step towards the development of a brain-machine interface 

(BMI) system to the X1 exoskeleton – is demonstrated. 

I. INTRODUCTION 

Stroke is a leading cause of neurological disability in the 

United States [1] and accounts for the poor physical health 

and the social dysfunction evident in survivors [2]. Gait 

impairment is a large contributor to long-term disability and 

ambulatory dysfunction in daily living [3]. Physical 

rehabilitation tends to remain the mainstay in long-term 

stroke treatment to regain functional independence. This 

primarily focuses on harnessing extant neuroplasticity to 

learn normal, synergistic movement patterns that promote 

safe, independent ambulation. In this regard, therapeutic 

approaches, as well as underlying theoretical models to stroke 

rehabilitation, are diverse. However, continuously increasing 

healthcare costs tend to limit supervised therapy times and 

access to rehabilitation clinicians at later stages of recovery, 

thereby acting as a rate-limiter to functional recovery.  
More recently, body-weight supported robot-assisted 

treadmill training has been shown to lead to better functional 
outcomes [4-7]. However, the limitation of these devices is 
that they are largely restricted to the clinical or research 
setting, owing to their size, and are therefore less amenable to 
training with other functional tasks such as over ground 
walking, climbing stairs etc. Therefore, newer therapeutic 
“wearable” lower-limb robotic devices, namely 
“exoskeletons,” have been developed [8-10]. These augment 
the user by mechanically actuating joints to completely or 
partially assist movements of the lower limb segments, 
depending on the patient needs. However, the 
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neurophysiological (both central and peripheral) mechanisms 
by which these robotic devices interact with the human body 
are not yet completely understood. This knowledge is 
particularly important for designing appropriate therapeutic 
interventions for neurorehabilitation with these devices. Here, 
NASA’s (National Aeronautics and Space Administration) X1 
was used in conjunction with a neural (EEG) and 
musculoskeletal (goniometry and electromyography (EMG)) 
interface for the first time, in two healthy individuals as well 
as an individual with hemiparesis following stroke. The X1 
was originally designed for mobility assistance and leveraged 
technology developed during NASA’s Robonaut 2 program 
and prior work on lower extremity exoskeletons performed at 
the Florida Institute for Human and Machine Cognition 
(IHMC). This heritage makes X1 suitable as a rehabilitative 
tool for use with hemiparetic stroke survivors.  Its versatility is 
also being demonstrated in the areas of exercise and 
dynamometry, capabilities important to NASA for 
counteracting the detrimental effects of microgravity during 
spaceflight.  The primary objective was twofold: a) to 
demonstrate feasibility of implementing a multimodal 
physiological interface with the X1 device, and b) to decode 
lower limb movement (in terms of kinematics and kinetics) 
during over ground walking from scalp EEG signals. This will 
drive design of an optimal neural interface with the X1, which 
can be clinically implemented and tested for efficacy in stroke 
rehabilitation. 

II. METHODS 

A. Participants 

Two able-bodied males (H1 and H2; ages 33.75 +/- 0.12 yrs) 

and one 51-year old male (S1) with right hemiparesis 

following stroke (Fugl-Meyer Assessment of Lower 

Extremity Motor function score 12/34; Berg Balance Scale 

score 38/56; Functional Gait Assessment score 13/30) 

participated in this study. All participants provided voluntary 

informed consent and performed study procedures that were 

approved by the Institutional Review Board at the University 

of Houston. 

B. X1 powered lower limb exoskeleton 

The X1 exoskeleton is a 10-degree of freedom (DOF) 
wearable robotic device created through a partnership between 
NASA’s Johnson Space Center and IHMC [11].  In the 
configuration used for this study, four DOFs are actuated 
(knee flexion/extension and hip flexion/extension for each leg; 
all in the sagittal plane) and six DOFs are passive (hip 
internal/external rotation, hip abduction/adduction, and ankle 
plantarflexion/dorsiflexion for each leg).  Actuation is 
achieved via custom-built series elastic actuators powered by 
electric motors and custom motor controllers.  The passive 

An Integrated Neuro-Robotic Interface for Stroke Rehabilitation 

using the NASA X1 Powered Lower Limb Exoskeleton  

Yongtian He*, Kevin Nathan*, Anusha Venkatakrishnan*, Roger Rovekamp, Christopher Beck, Recep 

Ozdemir, Gerard E. Francisco and Jose L. Contreras-Vidal, IEEE Senior Member 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 3985



  

DOFs are capable of being mechanically locked in position for 
applications with people lacking full use of their lower 
extremities and abdomen. Control modes of the X1 include a 
dynamic position trajectory generator, which commands hip 
and ankle joint angles to replicate a desired gait, based on 
inputs such as step height, step duration, and step length.  
Another useful control mode is "passive":  the motors respond 
to any knee or hip movement to "match" the user's desired 
joint angle.  In this manner, the device allows the user to walk 
with his/her normal gait; the X1 simply adjusts its joint angles 
to match the wearer, making the device relatively transparent 
to him/her.  

C. Experimental Procedure and Data Acquisition 

Participants were instructed to walk over ground, with and 
without the X1 donned, in a large empty indoor area (see Fig. 
1). Participants walked for about 5 minutes each in 3 different 
conditions: No Robot; Robot Off, wherein the X1 was donned 
in “passive” control mode; and Robot On, wherein X1 was 
donned in “active” control mode. For safety, healthy 
participants used assistive devices while walking, namely, a 
walker or a cane. A mobile harness system with minimal 
bodyweight support was used for participants while walking 
with the X1, as an additional safety precaution. Sufficient rest 
was allowed between trials to prevent fatigue.  

Whole scalp 64-channel EEG data were collected (actiCap 
system, Brain Products GmbH, Munich, Germany) and 
labeled in accordance with the extended 10-20 international 
system. EEG data were online referenced to channel FCz. 
Electrode impedances were maintained below 10 kΩ with 
bandpass filters set at 0.01-100 Hz with a sampling rate of 1 
kHz. EEG signals were digitized using a BrainAmp DC 
amplifier linked to BrainVision Recorder software version 
1.10 and were time-locked with the EMG, kinematics, and X1 
data using an external trigger circuit to mark the start and stop 
of both the rest and walking periods. The trigger signal was 
transmitted wirelessly using the Pololu Wixel RF 
transmitter/receiver (Pololu Corporation, Las Vegas, NV) 
[12]. 

Surface muscle activation patterns were recorded with a 

portable 8 channel surface EMG data acquisition system 

(DataLOG MWX8 EMG data collection unit, Biometrics 

Ltd., Cwmfelinfach, Gwent, UK) at a sampling frequency of 

1000 Hz (bandpass filtered at 20-460 Hz). Bipolar surface 

electrodes (SX230 EMG electrodes, Biometrics Ltd., 

Cwmfelinfach, Gwent, UK) with a fixed electrode distance of 

20 mm were placed bilaterally over the following muscles: 

tibialis anterior (TA); gastrocnemius (GA); biceps femoris 

(BF); vastus lateralis (VL) after adequate skin preparation to 

reduce impedance (shaved with a razor, softly abraded with 

sandpaper, and cleaned with alcohol using medical cotton). 

 Six flexible biaxial electro-goniometers (SG150 Gonio 

electrodes, Biometrics Ltd., Cwmfelinfach, Gwent, UK) were 

bilaterally mounted on hip, knee and ankle joints to capture 

lower limb angular kinematics at a sampling rate of 1000Hz. 

Specifically, the endblocks of hip goniometers were placed 

on the lateral side of the pelvis (upper endblock) and femur 

(lower endblock) to monitor hip extension/flexion. Knee 

sensors were placed on the medial side of femur (upper 

endblock) and tibia (lower endblock) for knee 

extension/flexion to minimize interference from the X1 straps 

on the lateral side. Ankle sensors were also medially placed to 

the lower end of the tibia and medial part of the calcaneus to 

capture ankle joint plantar/dorsiflexion. Joint angle at hip and 

knee was also measured internally in the X1 at 200 Hz, and 

synchronized with other data through the aforementioned 

trigger. Based on this, goniometer data was substituted by X1 

data whenever X1 data existed in the following kinematics 

analysis. That is to say, kinematics measured by goniometer 

was used only in ankle (X1 doesn’t have ankle joint 

measurement) and in no-robot condition. 

D. Signal Processing and Decoding Algorithms 

Pre-processing: Peripheral EEG channels were 

immediately removed for offline analysis as they are most 

susceptible to artifacts from eye-blinks, head movements, and 

facial/cranial muscle activity [13], namely, most frontal 

channels (Fp1, Fp2, AF7, AF8, F7, F8), all of the temporal 

channels (all channels labeled FT, T, TP), and the parietal 

channels PO9 and PO10. EEG data were then detrended and 

subsequently common average referenced. EMG signals were 

further bandpass filtered at 30-400Hz, full-wave rectified, 

and bandpass filtered at 0.1-2 Hz to extract their linear 

envelope [14]. Kinematic data were bandpass filtered at 0.1-3 

Hz, given that this frequency range contained 90% of the 

original power in walking [15]. In order to match the 

sampling rate of other data, X1 data were interpolated to 

reach 1 kHz offline. EEG data were filtered into the same 

band as EMG and kinematics data to be later fit into the 

decoder. All data processing was done offline in Matlab 

(Mathworks Inc., Natick, MA). 

Fig. 1. Left: A stroke subject fitted with the NASA X1 exoskeleton and 

goniometer, EEG, EMG sensors. Right: A diagram of placement of the 

sensors. Dot indicates EMG sensor, thick solid line indicates goniometer. 
Apart from other sensors on left leg, ankle goniometer on right leg is shown 

here. All sensors come in pairs on both legs. (Picture adapted from 

https://www.biodigitalhuman.com/) 
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Decoding Algorithm: Principal component analysis (PCA) 

was applied to the EEG data matrix to reduce the high 

dimensionality (number of channels multiplied by number of 

time lags), by an approximate factor of 10 while still 

preserving 99% of the variance. A 10
th

 order unscented 

Kalman filter was used to separately predict the goniometer 

and EMG measurements from the EEG signals. This 

recursive state space algorithm was adapted from the Kalman 

filter used for neural spike decoding in [16], with a slight 

variant on the neural tuning model adapted for EEG. The 

neural tuning models used were two linear functions mapping 

weights to a vector of EMG voltages at each recorded muscle 

and to a vector of joint angles and their time derivative, with 

no other nonlinear augmented terms. Decoding accuracies 

were assessed via a ten-fold cross-validation procedure. 

Prediction accuracy of the decoders was quantified by 

calculating Pearson’s correlation coefficient, r, between the 

measured kinematic/EMG signal and the predicted output 

[15]. 

III. RESULTS 

In this pilot study, the feasibility of using the X1 lower limb 

exoskeleton on a stroke survivor was established. 

Particularly, a multimodal, namely neural (EEG), 

electromyographic (EMG) and motion (goniometers) 

interface was instrumented in conjunction with the X1 

exoskeleton. Here, successful decoding of lower limb joint 

kinematics as well as kinetics (EMG) from scalp EEG in a 

stroke survivor fitted with the X1 exoskeleton while walking 

over ground (Fig. 2) is shown for the first time. It is 

interesting to note that that the decoder performed reasonably 

well; similarity between measured and reconstructed 

kinematic and kinetic traces in hip and knee joint kinematics 

of the affected (right) leg of the stroke survivor was observed. 

Since the X1 configuration utilized in this study does not 

provide ankle measurement data, goniometer data were 

substituted for them throughout this study. However, offline 

correlation coefficients between joint kinematics measured 

by X1 (hips and knees) and corresponding goniometers were 

high (r ≈ 0.9), indicating reliability of the X1 system in 

movement assessment and its potential as a rehabilitative 

tool. 

 Fig. 3 shows the decoding accuracies for both kinematics 

and EMG across the 10 different folds of decoding. As seen, 

decoding accuracies tend to be high and above chance levels 

(determined by calculating decoding accuracies from Rest 

EEG), and reasonably consistent across the three conditions.  

Compared to joint angles, accuracy for decoding EMG 

activity tends to be slightly lower on average. Moreover, 

decoding accuracies were comparable across all subjects. 

Taken together, these findings suggest the feasibility of 

decoding gait parameters in functional over ground walking 

in stroke individuals fitted with a powered exoskeleton. 

IV. DISCUSSION 

Here, preliminary evidence was presented for integrating 
an EEG-based neural interface with a lower limb robotic 
exoskeleton, namely the X1, for potential applications in 
stroke neurorehabilitation. The significance of this system lies 
in the fact that it can be used for gait rehabilitation in 
functional environments, i.e. walking over ground versus the 
treadmill-based operation of existing robotic rehabilitation 
devices. Specifically, the decoupling of the robotic system 
from the treadmill allows for easy incorporation into 
rehabilitation regimens for exercise training other than 
walking as well.  

Next, the feasibility of decoding joint kinematics and 
muscle activity patterns from scalp EEG during walking with 
the X1 in healthy participants and a stroke survivor was 

Fig. 3. Boxplots showing decoding accuracies for kinematics and EMG 

across 10-folds of cross-validation for healthy subjects and the stroke 

individual, across both lower limbs in different walking conditions. Chance 
level was established by decoding accuracies obtained for predicting 

kinematics and EMG from Rest EEG. Note that lack of overlap between the 

interquartile ranges of boxplots indicates significant difference in medians. 

Fig. 2. Exemplary traces of reconstructed joint angular position measured 

by the X1 and EMG linear envelopes of lower limb muscle activities in the 
"Robot On" condition for one healthy subject (H2) and the affected leg of 

the stroke survivor (S1). Red traces represent reconstructions (normalized) 

from the right leg; black traces represent measured data (normalized) from 
the right leg. TA: Tibialis anterior; GA: Gastrocnemius; VL: Vastus 

lateralis; BF: Biceps femoris. 
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demonstrated. Interestingly, moderately high decoding 
accuracies were observed, averaging around 0.5 for lower 
limb kinematics from noninvasively recorded scalp EEG. This 
is very encouraging as these systems can readily be translated 
to the clinic. However, decoding accuracies for lower limb 
EMG activities were lower, on average around 0.4. This was 
probably due to the fact that EMG electrode placement was 
particularly difficult due to the X1’s human-machine interface 
present in the same anatomic locations. This is a limitation that 
deserves attention; strategies to overcome this issue via device 
design modification are in work. For example, interface cuffs 
and straps with a recessed area for EMG electrodes would 
greatly help integrating the myoelectric interface with the X1. 
This modification would help both space and non-space 
clinical applications of the X1 by making it more equipped for 
physiological monitoring of user effort during exercise as well 
as rehabilitation. Another important consideration in the 
decoding of movement from scalp EEG during walking is the 
head movement-related artifact potentially contaminating 
EEG. Currently, work is underway in our lab to systematically 
characterize this artifact and its influence on the decoding 
algorithm and we aim to use these data to modify the 
algorithm by increasing its robustness and reliability. 
  

Clinical Implications and Future Directions 
 

These preliminary findings have important implications in 
designing neural interfaces that can directly control wearable 
robotic devices during walking. Unlike classifying discrete 
commands such as “walk” and “stop”, our study demonstrates 
the possibility of controlling the X1 via continuously decoded 
trajectories. This can help ensure more thorough engagement 
of the user and also allows simultaneous monitoring and 
quantification of internal states and neural plasticity over time. 
Particularly, such a system can be more readily applied to 
stroke patients with lesser functional abilities given the 
assistance provided by the robotic devices, thereby allowing 
gait training in these individuals while ensuring patient 
engagement. 

An important point to be noted here is that an actuated 
ankle joint in the X1 would be very clinically relevant to 
counteract foot drop problems typically seen in stroke 
survivors. This would significantly help train gait initiation 
and encourage normal heel-toe gait patterns in these patients. 
Currently, work is underway to add an actuated ankle to the 
X1’s design. Another area that needs further investigation is 
the control algorithms or “strategies” that can be incorporated 
into rehabilitation protocols. These could range from 
“assist-as-needed” to X1-provided resistance as users perform 
movements while wearing the robot. In this context, the 
EEG-based neural and peripheral musculoskeletal interfaces 
will also serve as monitoring means to observe and quantify 
user engagement during therapeutic sessions. An appropriate 
feedback loop can then be set up to incorporate these data into 
the control algorithm so that it can be modified as needed. 
Together, this will help create an “adaptive” neurorobotic 
system that will constantly adapt to the user’s needs and 
promote functional recovery. 

In summary, the first evidence was provided for the 
feasibility of decoding kinematic and surface EMG patterns 
from scalp EEG during over ground walking of both healthy 
and post-stroke subjects with a powered robotic exoskeleton. 
Further research is required to validate this system’s clinical 

utility and to provide insights into design modifications. The 
authors are currently engaged in a larger study with more 
stroke survivors to address these important clinical questions 
to enable translation of this neurorobotic interface to X1 for 
stroke rehabilitation. 
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