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Abstract— Multimodal brain imaging data fusion is a 
scientifically interesting and clinically important topic; however, 
there is relatively little work on N-way data fusion. In this paper, 
we applied multi-set canonical correlation analysis (MCCA) to 
combine data of resting state fMRI, EEG and sMRI, in order to 
elucidate the abnormalities that underlie schizophrenia patients 
and also covary across multiple modalities. We also tested 
whether the identified group-discriminative components can be 
used for feature selection in group classification. MCCA is 
demonstrated to be an effective feature selection technique, 
especially in multimodal fusion. We also proposed an ensemble 
feature selection scheme by combining two sample t-test, MCCA 
and support vector machine with recursive feature elimination 
(SVM-RFE), resulting in optimal group-discriminating features 
for each modality. Finally, we compared the classifying power 
between two groups based on the above selected features via 7 
modality-combinations. Results show that the fMRI-sMRI-EEG 
combination derives the best classification accuracy in training 
(91%) and predication rate (100%) in testing data, validating 
the effectiveness and advantages of multimodal fusion in 
discriminating schizophrenia. 

I. INTRODUCTION 

Multimodal brain imaging techniques are playing 
increasingly important roles in elucidating structural and 
functional properties in normal and diseased brains, as well as 
providing the conceptual glue to bind together data from 
multiple types or levels of analysis. However, most current 
approaches have focused on pair-wise fusion and there is still 
relatively little work on N-way data fusion and examination 
of the full relationships among multiple data types. Given the 
availability of more powerful MR scanners, there are 
typically more than 2 imaging modalities available for one 
participant. Hence, we believe the joint multivariate analysis 
of multiple data types will improve our ability to understand 
brain diseases and show promise for biomarker identification.  

Till now, Most multivariate N-way fusion models are 
based on canonical correlation analysis(CCA) or independent 
component analysis (ICA), e.g. multi-set CCA (MCCA) [1] 
and ”mCCA+joint ICA” [2, 3], which have been successfully 
applied to combine 3 modalities, e.g., fMRI, sMRI and DTI. 
Both methods are able to identify both modal-common and 
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modal-unique group discriminative patterns for schizophrenia 
patients (SZ) versus healthy controls (HC), which makes 
discoveries of changes in one modality causing related 
alterations in distant, but connected regions in other 
modalities possible. 

To the best of our knowledge, there has been no report 
combining resting state fMRI, resting state EEG and sMRI 
together to study schizophrenia. Additionally, whether the 
identified group-differentiating components from the 
proposed N-way fusion model can be used for classification? 
Which combination of the above 3 modalities achieves the 
greatest discriminating power? These questions are still to be 
determined.  

In this project, first we applied the 3-way MCCA model 
to examine the joint and modality-unique group differences 
between SZ and HC by using resting state fMRI, resting state 
EEG and sMRI data. Then we proposed an ensemble feature 
selection strategy to determine the optimal features for each 
modality, by taking advantages of 3 feature selection methods: 
MCCA, two sample t-test and support vector machine with 
recursive feature elimination (SVM-RFE). Finally, we 
compared the group prediction power of 7 modality- 
combinations based on above selected features.  

The remaining of this paper is organized as follows: 
section 2 describes the MCCA algorithm, the proposed 
feature-selection and classification framework and a brief 
introduction of SVM-RFE. In section 3, the used real human 
data and its preprocessing are described. Section 4 and 5, the 
real data application results are introduced and discussed, as 
well as the future work.  

II. APPROACHES 

A.  Multimodal Fusion by MCCA 

The basic strategy of mCCA+jICA is shown in Figure 1. 
We assume the multimodal fusion input matrix Xk 
(subjects-by-voxels) is a linear mixture of M sources given by 
Sk, mixed with a nonsingular mixing matrix Ak : 

       Xk = Ak ·Sk            k = 1, 2, 3      (1) 
MCCA aims to project Xk into a space so that correlations 
among mixing profiles Ak of n modalities are jointly 
maximized (in the sense of sum of squared correlations in this 
study)[4]. As shown in Figure 1, the resulting canonical 
variants (CVs) Ak are correlated from high to low pair-wisely 
only on corresponding columns. Namely, MCCA can 
associate multiple modalities with flexible linkages 
(correlation) in their mixing matrices: 
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k kE D D I  

1 2{ } ( , ... )T M
i j ij ij ijE diag r r rD D

          (2) 
And the corresponding components Sk can be derived as: 
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Sk = pinv(Ak) · Xk        (pinv: pseudo inverse)    (3) 

 
       Figure 1. Three-way fusion strategy of MCCA 

Two-sample t-tests were then performed column-wisely on 
Ak to test which components are significantly different 
between HC and SZ. If components of the same index show 
group differences in more than one modality, they are called 
modality-common group-discriminative components, other- 
wise, they are modality-unique discriminative ones. 

B. Classification based on MCCA components 

  To test the potential use of the identified group 
discriminative components, we used them to generate 
features and train a classifier, to see whether they are able to 
predict diagnosis or serve as potential biomarkers, which may 
prove the great significance for multimodal analysis.  
        For each modality, we transferred the 
group-discriminating components into Z values and set a 
threshold at |Z|>3 to generating masks. The masks of the same 
modality were then combined and applied to the raw input 
matrix of each modality, which served as the input to the 
further classification based on single-modal and multimodal 
features. Each individual was assigned one of two class 
memberships. We then trained linear support vector machine 
with recursive feature elimination [5] by 10-fold 
cross-validation (trained on 90% of the randomly chosen data 
samples and tested on the other 10%) 100 times for each of 
the 7 modal combinations and recorded sensitivity and 
specificity, in order to find out which combination is optimal 
for SZ discrimination when using the features generated by 
MCCA. 

C.  Ensemble feature selection  

After verifying that MCCA is an effective feature 
selection method, we proposed an ensemble feature selection 
strategy, by combining three techniques: two sample t-test 
(with p<0.01), MCCA(with |Z score|>3) and SVM-RFE[5], 
as shown in Figure 2.   

 
Figure 2 flowchart to select optimal features&modal-combinations 

Here we trained SVM using recursive feature elimination 

(SVM-RFE), which is able to determine a value of each 
feature, i.e. frequency values, by training a SVM using 
training samples with class labels to identify a determinative 
subset. The frequency values ranged from 0 to 1; the higher 
the value, the more relevant a specific brain feature is for the 
classification. One or more features having the smallest 
values are removed and an updated kernel matrix is generated 
using the remaining features. The process is repeated until a 
predetermined number of features remain which are capable 
of accurately separating the data into two classes [6]. Note 
that SVM-RFE can be used for both feature selection and 
classification. Therefore the subset of the EEG spectra/ 
ALFF/ GM that achieves a minimum validation error is 
chosen as the set of most informative features for each 
modality.   

There are two stages as shown in Fig 2. In the first stage 
(feature selection), we used only 91 subjects, and the other 5 
HC and 5 SZ were set aside and used for prediction in the 
second stage (classification). Both stages were repeated 10 
times for a random set of 10 testing subjects. For each 
modality, after we got features of interest by 3 methods, all of 
them were combined and trained by SVM-RFE again via 
10-fold cross-validation. Those features with frequency 
values >0.5 were selected as optimal features. The 
corresponding specificity, sensitivity, and predication rates 
(for the 10 testing subjects) for each single modality were 
recorded, see part B in Results. 

D. Determination of optimal modality-combination 

After obtaining the optimal features for each single 
modality, we tested the group classification (for 91 training 
subjects) and predication power (for 10 testing subjects) of 7 
modal-combinations (3 single, 3 pair-wise, 1 three-way) by a 
linear SVM classifier again with 10-fold cross-validation. 
The specificity, sensitivity, classification accuracy (for 91), 
and predication rates (for 10) are displayed in Results section.  

III. DATA 

A. Human brain data 

Participants were recruited at the Olin Neuropsychiatric 
Research Center, CT and were scanned by a 3T Siemens 
scanner for resting state fMRI and sMRI. EEG was recorded 
with a 64-channel (sampling rate = 1000 Hz) during a 5 
minute resting-state with their eyes open. Electrodes were 
placed according to the standard 10-20 placement. An 
additional two channels recorded ocular artifacts. All subjects 
gave written, informed, Hartford hospital IRB approved 
consent. Table 1 lists their demographics. Before doing two 
sample t-test on mixing coefficients of MCCA, we regressed 
age and gender factors out to remove the potential influence 
of these variables on SZ-HC difference. 

              Table 1. Demographics of 101 participants 

 Num Age  Gender  Ethnic Hands  

SZ  48  30.5+-11.5  36M 12 F  40 white 4 left hand 

HC 53  36.7+-12.4  23M 30F  50 white 4 left hand 

 p   0.012  0.001 0.73  0.8  
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B. Data preprocessing 

The high-dimensional neuroimaging data is typically 
very noisy, thus redundancy reduction and denoising is 
important to facilitate multimodal fusion [7] and to provide a 
simpler representative space for each modality, e.g., the 
fractional amplitude of low-frequency fluctuation (ALFF) of 
resting state fMRI, the gray matter (GM) segmentation image 
from sMRI, the frequency spectra of resting-state EEG and 
voxel-wise DTI fractional anisotropy etc. we used the first 3 
measures in this project. 

FMRI preprocessing: SPM8 software package was 
employed (http://www.fil.ion.ucl.ac.uk/spm /software/spm8) 
Ten first time points were removed and images were 
realigned. The fMRI data were then spatially normalized and 
slightly down sampled to 3×3×3 mm3. To remove the motion 
effect, we further regressed out the 6 motion parameters for 
each slice and continued to spatial smoothing (8×8×8 mm3). 
Finally, we extracted the voxel wise ALFF map, which is 
calculated by computing the fast Fourier transform (FFT) of 
each voxel time series, taking the square root of the power 
spectrum to obtain amplitude, and averaging amplitude in 
[0.01, 0.1] Hz. Prior to computing ALFF, the original 4-D 
fMRI data sets were divided by their global mean (over time 
and space) to normalize differences in scan intensity units[8].  

SMRI preprocessing:  sMRI data were also preprocessed 
using the SPM8 software package which was used to segment 
the brain into white matter (WM), GM, and cerebral spinal 
fluid with un-modulated normalized parameters via the 
unified segmentation method [9]. After segmentation, the 
GM images were down-sampled and smoothed similar to the 
fMRI data. Subject outlier detection was further performed 
using a spatial correlation with the template image, to ensure 
that all subjects were properly segmented, (for details, see 
[10]).  

EEG preprocessing: was conducted using both 
EEGLAB toolbox (http://sccn.ucsd.edu/eeglab) and custom 
functions. Data was band pass filtered (0.01- 0.5 Hz), 
down-sampled to 250Hz and average referenced. Individual 
channels were excluded if the voltage deviated by ±50 mv (4 % 
of channels were excluded). Then EEG data was segmented 
into 5 individual 60-second epochs and epochs were excluded 
if more than 30 channels exceeded ± 500 mv (47 epochs were 
excluded out of 550). Eye blink and muscle artifacts were 
attenuated by conducting a temporal ICA decomposition via 
EEGLAB. The number of components equaled the number of 
good channels within the segment. 15 artifactual components 
were removed by visual inspection. The ICA reconstructed 
data was segmented into 2 second epochs without overlap. 
Each epoch was decomposed into frequencies with the 
discrete Fourier transform (Δf=0.5Hz) implemented with the 
fast Fourier transform function. The complex valued Fourier 
data was absolute valued (i.e. converted to amplitude), logged, 
averaged across epochs, and the response at excluded 
electrodes was interpolated (inverse distance weighting). The 
resulting [freq × channel] matrix was converted to a vector for 
each subject for MCCA analysis.   

IV. RESULTS 

A. Group difference identified by MCCA 

The components with significantly different mixing 
coefficients between HC and SZ are shown in Figure 3, where 
the joint group-discriminative ones are framed in green color 
(asterisk indicates FDR correction for multiple comparison) 

 
Figure 3. Group- discriminative components between SZ and HC 

Fig 4 presents the overlapped spatial maps (extracted by |Z|>3) 
of the components (fMRI #10, sMRI #1&4, EEG #1&4))that 
were used for classification. It shows that prefrontal, occipital 
and motor regions are emphasized in resting EEG spectra (Fig 
4b) and the low frequency bands are highly activated. For 
sMRI (Fig 4c), superior temporal gyrus, parahippocampal 
gyri and inferior parietal cortex are significant. In ALFF map 
(Fig 4d), the default mode network, middle frontal gyrus and 
middle occipital gyrus are displayed; All these findings are 
consistent with previous reports [11], while our method is 
able to further link these co-varied alterations among 
modalities. 

 
Figure 4. Spatial maps of the selected features by MCCA components and the 
classification results based on these features. 

Fig 4(a) indicates the classification results based on the 
features extracted by MCCA. It is notable that combination of 
EEG-GM-ALFF achieves the best classification accuracy at 
90%, both sensitivity and specificity increase about 15% 
compared to single modalities, suggesting that multimodal 
fusion does  improve the diagnosis prediction, in accordance 
with [12, 13], and the MCCA method is promising for 
identification of  potential biomarkers.   

B.  Optimal feature and modality-combination 

Figure 5 indicates the effectiveness of the proposed 
ensemble feature selection scheme for every modality. It’s 
clear that SVM-RFE is an excellent feature selection method 
and it greatly improves the classification and prediction after 
being used in the combined features (T-test + MCCA + 
SVM-RFE) to further remove the less discriminative ones, 
see the last row in each sub-table. In this unbiased test, 
sensitivity, specificity and classification accuracy all 
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increased considerably compared using only one technique. 
Moreover, the prediction rates for 10 blind test subjects were 
all more than 80%. In addition, sMRI and fMRI appears to be 
more group-discriminative than EEG spectrum, and 
fMRIshows 90% accuracyin testing.  

 
Figure 5. Classification results using various selected features. 

Figure 6 indicates the most discriminative feature maps 
for each modality, as well as the specificity, sensitivity, 
classification accuracy (for 91), and predication rates (for 10) 
for all 7 modality combinations. The 3-way combination 
again achieves the best performance with 91% accuracy and 
100% prediction rate, confirming the strengths of multimodal 
fusion. Furthermore, the implicated brain regions for each 
modality are in well accordance with previous reports, all 
demonstrating brain deficits in schizophrenia underlying 
frontal lobe. Generally speaking, the proposed method takes 
advantage of different imaging modalities to help improve the 
diagnosis of mental illness.  

 
Fig 6. Optimal features and modal-combinations for classification  

V. CONCLUSION 

This project is to our knowledge the first attempt to 
combine resting-state fMRI, resting state EEG and sMRI data 
to discriminate schizophrenia. Our results suggest that 
multimodal fusion of the selected group-discriminative 
MCCA components enhances the diagnosis prediction 

substantially. Moreover, we proposed an ensemble feature 
selection strategy, in which SVM-RFE acts as a core and 
capitalizes the strengths of multiple methods, leading to the 
discovery of the most group differentiating features for each 
single modality, and the optimal modal- combination for 
classification. 

Though we found fMRI-sMRI-EEG combination is the 
most group distinguishing in this study, we note that fusing as 
many modalities as possible does not guarantee the best 
classification rates, as reported in [3].  In order to detect 
potential biomarkers for several brain disorders, the proposed 
analysis could be used to compare all possible combinations 
when multiple modalities are available. We plan to pursue 
this possibility in future work by using larger data sets and 
various modalities, which aims to have bigger effect size and 
achieve higher accuracy. 
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