
Adaptive-optics Optical Coherence Tomography Processing Using a
Graphics Processing Unit*

Brandon A. Shafer1, Jeffery E. Kriske, Jr.2, Omer P. Kocaoglu3, Timothy L. Turner3,
Zhuolin Liu3, John Jaehwan Lee1, and Donald T. Miller3

Abstract— Graphics processing units are increasingly being
used for scientific computing for their powerful parallel process-
ing abilities, and moderate price compared to super computers
and computing grids. In this paper we have used a general
purpose graphics processing unit to process adaptive-optics
optical coherence tomography (AOOCT) images in real time.
Increasing the processing speed of AOOCT is an essential step
in moving the super high resolution technology closer to clinical
viability.

I. INTRODUCTION

Adaptive-optics optical coherence tomography (AOOCT)
is a technology that has been rapidly developing in recent
years, increasing the capabilities of optical imaging to amaz-
ing heights. Using a complex array of adaptable mirrors,
lasers, cameras, lenses, etc., researchers can scan the human
eye and achieve detail down to the very rods and cones
that give one sight. Adaptive-optics has even allowed for
the discovery of new properties of cone photoreceptors [1],
[2]. As with a lot of medical research, the end goal of
technological advances of this nature are to aid in clinical
diagnosis and treatment of patients. However, there exists
in clinical settings constraints and considerations that may
not exist in a research and/or lab environment. Namely,
ophthalmologists and optometrists require an imaging tech-
nology that produces immediately available results to aid in
diagnosis of patients. Tools that are provided to clinicians
need to enhance their capabilities without hindering the
throughput of their work.

AOOCT, by its nature, requires significant calculations to
transfer the scanned data from the eye into human visible
images for diagnosis. Although central processing units
(CPUs) are increasingly powerful, the time required for these
calculations using conventional sequential programming is
prohibitive for a clinical environment. Whereas, graphics
processing units (GPUs), designed in a very different way,
lend to much better handling of certain kinds of problems
that comprise a high degree of parallelism, e.g., working with
matrices, images and video, data sets.

*This study was supported by Indiana University Collaborative Research
Grant fund of the Office of the Vice President for Research, and National
Eye Institute grants R01-EY018339 and P30-EY019008.

1B. Shafer and J. Lee are with Dept. of Electrical and Computer Engi-
neering, Indiana University Purdue University at Indianapolis, Indianapolis,
IN 46202 b.a.shafer at ieee.org

2J. Kriske is with Dept. of Computer Science, Indiana University Purdue
University at Indianapolis, Indianapolis, IN 46202

3O. Kocaoglu, T. Turner, Z. Liu and D. Miller are with School of
Optometry, Indiana University, Bloomington, IN 47405

The way that graphics processors work is different from
a conventional CPU such as the Intel or AMD processors
in personal computers. CPUs are now very powerful devices
that can handle numerous sequential instructions (step-by-
step commands) and work at high clock rates. Instead of a
few powerful cores, GPUs contain up to thousands of less
powerful cores. Sets of cores are controlled by streaming
multiprocessors (SMs). The cores under an SM operate in
tandem, following the same instructions together each on
their own set of data, what NVIDIA calls SIMT, i.e., single
instruction multiple threads.

By using parallel programming in the form of Nvidia’s
CUDA, we have been able to perform the necessary compu-
tations for image production in AOOCT, in real time. While
some research has been done recently in using GPUs for
OCT processing [3], [4], it is still a fairly new research area
and as far as we know, this is the first it is being applied to
ultrahigh resolution AOOCT for use in the human retina.

II. AOOCT

In the last couple of decades, enormous progress has been
made in the area of retinal imaging in vivo (in the living
human eye). One of these advances is in the area of adaptive-
optics optical coherence tomography or AOOCT. Using ultra-
high resolution spectral domain coherence tomography with
adaptive-optics, researchers can get 3D resolutions as fine as
3 x 3 x 3 µm3 [5], [6].

The evolution of this technology started with optical
coherence tomography (OCT) [7], first published with use
in vivo in 1993 [8], [9]. From the report “Optical Coherence
Tomography” by Huang et al. comes the following descrip-
tion:

“Both low-coherence light and ultrashort laser
pulses can be used to measure internal structure
in biological systems. An optical signal that is
transmitted through or reflected from a biologi-
cal tissue will contain time-of-flight information,
which in turn yields spatial information about
tissue microstructure” [7].

The first scanning was able to produce high spatial resolution
of less than 2µm, but the lateral resolution was limited
by the beam diameter of the light to 9µm (of course this
was in sample tissue not in vivo). Since 1997, adaptive-
optics have been used to increase the resolution in OCT
technology by correcting the ocular aberrations in real time
using deformable mirrors. It was first developed to correct

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 3877

for atmospheric blur in ground-based telescopic systems, but
is now a valuable tool in vision research [6].

To summarize, optical coherence tomography exploits the
fact that different tissues reflect light differently in order to
create a high resolution image. Adaptive-optics then corrects
for diffraction caused by the eye’s lens. Even though a type of
CCD camera is used to obtain the “image” from the system,
the image must be processed in order to reconstruct the 3
dimensions of the retina and becomes useful for a clinician.
In talking about AOOCT images in this paper, the terms A-
line, B-scan, and volumes are used as shown in Figure 1.

Fig. 1: Volume AOOCT images.

III. GPU PROCESSING

Performing the calculations of the AOOCT process on a
GPU has several challenges. The ultimate goal of utilizing
a GPU is to make the processing time real-time; that is,
the images are processed as quick or quicker than they are
acquired.

A. Parallelization

The GPU performs calculations a B-scan at a time. Algo-
rithm 1 outlines the process that an individual B-scan goes
through. Each step in the algorithm is performed on the
GPU as a kernel (function that runs on the GPU) and it was
necessary to optimize each step by itself and in relation to
the whole process, using the structure of the GPU to greatest
advantage.

1) Convert to float: Line 2 of Algorithm 1 converts the
incoming data from 16-bit unsigned integers to 32-bit floats.
To perform the calculations necessary for reconstruction, first
data needs to be copied to the GPU from CPU RAM and
converted to float. When our program is initialized, memory
in the RAM is registered as pinned memory with the GPU to
facilitate what is called zero copy. This enables faster copies
and allows the kernel to reference the data directly without
an extra memory copy. Each pixel of data is cast from an
unsigned 16-bit integer to a single precision 32-bit float and
stored in global memory on the GPU.

2) Subtract DC component: Line 3 from Algorithm 1 is
to remove the DC component of the incoming A-line signals
for the entire B-scan. To subtract the DC component out of
the OCT signal, an averaged A-line spectrum is calculated
from all of the A-lines of a B-scan as shown in Equation 1.

Āi =
∑
j

Aij (1)

where i is an element of A-line and j is the place in B-
scan. Then the averaged component is subtracted from each
element in the B-scan as shown in Equation 2.

Anewij = Aij − Āi (2)

When first approaching this problem, the most straight-
forward method was to write a kernel where a thread would
loop through a column, accumulating a summation, divide by
the number of elements, and loop through again subtracting
the average from each element. We initially implemented this
technique.

However, summing the elements linearly like this seemed
very inefficient compared to another summation technique
called Reduction. Linearly adding and subtracting through
the columns takes on the order of 2N steps per thread. In
reduction, the elements are added together in steps similar
to a “Divide and Conquer” recursive technique in traditional
programming [10]. Generally, this allows for reducing the
number of steps to log2N per warp (a set of threads).
However, to use reduction for DC subtraction, the B-scan
needs to be transposed first. The reason for this is in the
way that memory is accessed by the GPU. If the data is not
transposed first, when doing column reduction the memory
access will be non-coalescent (i.e., scattered) and require
many more memory fetches than necessary. If, however, the
B-scan is transposed, each row of the resulting matrix will
be reduced to find the summation of the elements, employing
coalesced memory access. Once implemented, we achieved
better performance than the previous method.

Similarly, the act of transposing a large matrix on a GPU
takes some of its own tricks in order to run optimally. An
excellent paper on this by Reutsch and Micikevicius [11]
shows how to use tiling and shared memory as well as

Algorithm 1 B-scan Reconstruction.

1: for all i such that 0 ≤ i < number of B-scans do
2: Convert incoming spectral data from 16-bit unsigned

integer to float
3: Subtract DC component from B-scan
4: Pad A-lines
5: Align to k-space
6: Compensate for dispersion
7: Do 1D FFT of each A-line
8: Calculate intensity
9: Normalize

10: Move to next available CUDA stream for next B-scan
11: end for

3878

diagonal block reordering in order to facilitate memory
coalescing and prevent memory bank conflicts. Our transpose
makes use of all of these techniques (tiling, etc.) to optimize
our speed.

Once the B-scan is transposed, the reduction calculates
the total along each row and stores the calculated average in
a new vector. After this step is complete, another kernel is
launched that subtracts the average from each element.

3) Pad A-lines: The next step, Line 4 of Algorithm 1,
is padding A-lines. To better facilitate processing on the
GPU and to create better images, the input signals are re-
sampled through a four step process. First, the initial signal
is padded on both sides of the A-line to have a size of a
power of two to better facilitate the GPU. Second, the signal
is passed through an FFT. Because the signal is real-valued,
the transform F(x) is hermitian. This can be and is exploited
to increase processing speed by decreasing storage size.

Xk =

N−1∑
n=0

xn · e−i2πkn/N (3)

Third, each A-line is padded with zeros. If the full A-line
was seen, the padding would be in the middle, but since
we are using hermitian symmetry, only one side of the A-
line is stored and padding only needs to be applied to the
end. The Hermitian symmetry allows the resulting data to be
stored in N/2 + 1 complex values. The padding then occurs
from N/2 + 2 until Npadded/2 + 1. Fourth, an inverse FFT is
performed as follows.

Xk =

N−1∑
n=0

xn · ei2πkn/N (4)

The signal going into the first FFT and the signal after the
inverse FFT are real-valued. Currently, if the initial A-line
width is less than 2048, it is padded to 2048 in step one, and
finishes at 4096 after step four. If the initial A-line width is
greater than 2048, the numbers become 4096 and 8192.

4) Align to k-space: Line 5 of Algorithm 1 is to align
the A-lines to k-space. When captured, the initial images
happen to have unevenly spaced wavelengths; in order to
create an evenly spaced final image, the A-line spectra must
be realigned from λ-space to k-space, where k = 2π/λ.
Additionally the samples need to be equally spaced in k-
space. In order to do this, a calibration file is needed with
the current wavelengths that are associated with the A-line
spectra. The first and last wavelength are converted to k-
space as in Equation 5 and Equation 6.

kmin = (2 · π)/wavelength[0] (5)

kmax = (2 · π)/wavelength[end] (6)

A vector is then created with evenly spaced values with kmin
and kmax as the beginning and ending elements. All of the
values are converted to λ-space so that the current A-line
spectra can be interpolated to the new evenly spaced values.

In practice, we use a simple linear interpolation to find
the new values for the A-line spectra. This requires a two

step process. First, the new values are mapped to old values
to find where the interpolation is going to take place. The
mapping searches the old wavelengths to find the element
that is just left or equal to the value being mapped.

The first step is not an ideal parallel problem because
the mapping of each element is somewhat independent. In
essence, a search is being performed for each λ′ to find the
location in the λ array where λi ≤ λ′ ≤ λi+1. Because
some searches will end earlier than others, the threads that
finish early must still wait until the other threads in the
same warp finish, causing the cores to sit idle. The list
of wavelengths is monotonically increasing, which allows
better than O(N) search time, but each thread is possibly
going to need different time to find the appropriate mapping.
However, the good news is that every A-line in a scan will
use the same wavelengths, so this mapping only needs to be
done once. In the mapping kernel, a vector is created and
stored in global memory that contains the location of the
λlefti which is the value that is less than or equal to the new
wavelength.

During the actual interpolation kernel, Equation 7 is per-
formed to find the new A-line spectra.

A′i = Alefti + (Arighti −Alefti)
λ′i − λlefti

λrighti − λlefti
(7)

where Alefti and Arighti are from the incoming A-line, and A′i
is the new value that we are interpolating from the incoming
data. The interpolation described in Equation 7 is performed
each A-line, while the mapping is only calculated on the first
A-line and stored for all the rest.

5) Compensate for dispersion: OCT images are often
blurred from an optical effect called dispersion [12], [13].
The light that enters the eye is dispersed because of the
refractive index of the tissue. The dispersion affects different
wavelengths differently. According to Cense et al., “the rela-
tion between phase θ(k) and the multiple orders of dispersion
can best be described by a Taylor series expansion:

θ(k) = θ(k0) +
∂θ(k)

∂k

∣∣∣∣
k0

(k0 − k) +
1

2
· ∂

2θ(k)

∂k2

∣∣∣∣
k0

(k0 − k)2

+ . . .+
1

n!
· ∂

nθ(k)

∂kn

∣∣∣∣
k0

(k0 − k)n

(8)
with λ0 the center wavelength and k0 equal to 2π/λ0” [13].

The third term represents second order dispersion. It is
manifested along the A-lines, and to remove the blur, each
element in an A-line is multiplied by a complex phase term
from a calibration file. The complex phase terms are found
in the human eye using a well-reflecting reference point,
the center of the fovea. The resulting B-scans are complex-
valued. In terms of CUDA, this is a very simple kernel that
reads in B-scans and multiplies by the complex coefficients
provided from calibration.

6) Process 1D Fast Fourier Transform: All of the prior
steps have been preparing the data for this reconstructive
step. This FFT will reconstruct the data into an actual retinal
volume image. The FFT in this step is a 1D FFT along each

3879

A-line. The B-scan is complex-valued from the previous step,
and resulting image frame will be complex-valued as well.

7) Perform final conversion to image: At this point, the
B-scan is reconstructed into a complex-valued image. To
enable viewing by a clinician, several steps can be performed
to make it more palatable. The following steps are highly
depended on the preference of the end user, but are still done
on the GPU if desired and are straightforward to implement.

1) Crop image.
2) Convert complex numbers to intensity.
3) (Optional) Convert to log scale.
4) Normalize into pixels.

The cropping of the image disposes of unnecessary parts
of the A-lines. The beginning of the A-lines often contains
large optical artifacts due to being near the coherence gate of
the OCT system. The end of the A-lines often contains little
useful information. Prior to finding the intensity values, the
image is cropped to exclude those regions of the A-lines.
Then, the complex numbers are converted to an intensity
value with Equation 9.

Iij = <(Aij)
2

+ =(Aij)
2 (9)

B. Fast Fourier Transform (FFT)

For FFTs, we turned to cuFFT, a library initially based
on FFTw for C++, but developed and optimized for running
on GPUs [14]. We utilize three FFTs in our algorithm: a
real-to-complex FFT, a complex-to-real inverse FFT, and
a complex-to-complex final FFT. The library allows us to
use advanced memory layout and batched processing. The
advanced memory layout allows us to place the output of the
first FFT in the zero-pad process directly into the memory
for the beginning of the IFFT. The memory can go from
size N real values to N/2 + 1 complex values to M/2 + 1
complex values back to M real values, and the advanced
memory layout makes that easier. It also takes advantage
of hermitian symmetry to save on storage space, and the
reduced size makes the resulting actions more efficient and
faster.

C. Data Flow

The steps are pipelined to enable better utilization of
GPU resources. CUDA allows for separation of kernels into
concurrent streams. Each stream can run independently from
each other. Generally speaking, the busier the GPU is, the
higher our throughput is going to be. As a B-scan comes into
the GPU, all of the steps taken on that B-scan as described
in Algorithm 1 are performed on a single stream. The next
B-scan is assigned to the next stream.

In order to pipeline the data, we needed separate data
paths for each stream. By data paths we mean the memory
space allocated for data to be read from and written to
by each processing step, e.g., the memory the initial FFT
writes to and the inverse FFT reads from. Each stream needs
to have its own allocation of memory. The streams could
access any of the global memory, but trying to coordinate
memory accesses between streams would be difficult and

would likely slow the whole operation. When the global
memory is plentiful enough, creating separate memory for
each stream is much simpler and easier to manage.

The cuFFT library relies on making a plan for an FFT.
We utilize three different plans for the FFT: real-to-complex
forward FFT, complex-to-real inverse FFT, and a complex-
to-complex forward FFT. When making a plan, the cuFFT
library does allocate global memory for its operations. While
this may not be obvious to the user, it is important in this
instance: since FFTs could be performed concurrently on
separate streams, we need separate plans for each FFT [14].

IV. RESULTS AND FUTURE WORK

The end result is a GPU program that speeds up AOOCT
image processing to about 32× as compared to what can
be done on a CPU using C++ and 1945× as compared
to the original Matlab version. On an image set with an
A-line width of 832 pixels, 240 A-lines per B-scan, 240
B-scans per volume, and a total of 11 volumes, our GPU
implementation computes in 1450 milliseconds compared to
47026 milliseconds in the CPU implementation and over 47
minutes in original Matlab implementation. The acquisition
speed for that data is 2.534 seconds, so the calculation time
is more than sufficient for now. In future work, as acquisition
speeds are increased, the GPU may need to be expanded to
using multiple GPUs for calculation.

REFERENCES

[1] A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single
cones in the living human eye,” Investigative Ophthalmology & Visual
Science, vol. 44, no. 10, pp. 4580–4592, 2003.

[2] J. Rha et al., “Rapid fluctuation in the reflectance of single cones and
its dependence on photopigment bleaching,” ARVO Meeting Abstracts,
vol. 46, no. 5, p. 3546, 2005.

[3] Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit
accelerated optical coherence tomography processing at megahertz
axial scan rate and high resolution video rate volumetric rendering,”
Journal of Biomedical Optics, vol. 18, no. 2, pp. 26 002–26 002, 2013.

[4] K. Zhang and J. U. Kang, “Graphics processing unit-based ultrahigh
speed real-time fourier domain optical coherence tomography,” IEEE
J. Sel. Topics. Quantum Electron., vol. 18, no. 4, pp. 1270–1279, July
2012.

[5] R. J. Zawadzki et al., “Ultrahigh-resolution adaptive optics - optical
coherence tomography: toward isotropic 3 µm resolution for in vivo
retinal imaging,” Proc. SPIE, vol. 6429, pp. 642 909–642 909–9, 2007.

[6] D. T. Miller et al., “Adaptive optics and the eye (super resolution
OCT),” Eye, vol. 25, no. 3, pp. 321–330, Mar. 2011.

[7] D. Huang et al., “Optical coherence tomography,” Science, vol. 254,
no. 5035, p. 1178, Nov. 1991.

[8] A. F. Fercher et al., “In vivo optical coherence tomography,” American
Journal of Ophthalmology, vol. 116, no. 1, pp. 113–114, 1993.

[9] E. A. Swanson et al., “In vivo retinal imaging by optical coherence
tomography,” Opt. Lett., vol. 18, no. 21, pp. 1864–1866, Nov. 1993.

[10] M. Harris, “Optimizing parallel reduction in CUDA,”
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf.

[11] G. Ruetsh and P. Micikevicius, “Optimiz-
ing matrix transpose in CUDA,” Jan. 2009,
http://www.cs.colostate.edu/ cs675/MatrixTranspose.pdf.

[12] Y. Zhang et al., “Adaptive optics parallel spectral domain optical
coherence tomography for imaging the living retina,” Opt. Express,
vol. 13, no. 12, pp. 4792–4811, June 2005.

[13] B. Cense et al., “Ultrahigh-resolution high-speed retinal imaging using
spectral-domain optical coherence tomography,” Opt. Express, vol. 12,
no. 11, pp. 2435–2447, May 2004.

[14] “CUDA toolkit documentation: CUFFT,” Aug. 2013,
http://docs.nvidia.com/cuda/cufft/index.html.

3880

