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Abstract— Glaucoma is a chronic neurodegenerative disease
characterized by loss of retinal ganglion cells, resulting in
distinctive changes in the optic nerve head (ONH) and retinal
nerve fiber layer (RNFL). Important advances in technology
for non-invasive imaging of the eye have been made pro-
viding quantitative tools to measure structural changes in
ONH topography, a crucial step in diagnosing and monitoring
glaucoma. 3D spectral domain optical coherence tomography
(SD-OCT), an optical imaging technique, has been commonly
used to discriminate glaucomatous from healthy subjects. In
this paper, we present a new approach for locating the Bruch’s
membrane opening BMO and then estimating the optic disc size
and rim area of 3D Spectralis SD-OCT images. To deal with
the overlapping of the Bruch’s membrane BM layer and the
border tissue of Elschnig due to the poor image resolution, we
propose the use of image deconvolution approach to separate
these layers. To estimate the optic disc size and rim area, we
propose the use of a new regression method based on the
artificial neural network principal component analysis (ANN-
PCA), which allows us to model irregularity in the BMO
estimation due to scan shifts and/or poor image quality. The
diagnostic accuracy of rim area, and rim to disc area ratio is
compared to the diagnostic accuracy of global RNFL thickness
measurements provided by two commercially available SD-OCT
devices using receiver operating characteristic curve analyses.

Index Terms— Glaucoma, rim area, SD-OCT, deconvolution,
Artificial Neural Network Principal component analysis

I. INTRODUCTION

Glaucoma is an optic neuropathy in which the eye’s

internal pressure increases and contributes to nerve fiber

damage in the optic nerve. The increase in intraocular

pressure (IOP) is generally due to either a malformation

or a malfunction of the eye’s drainage system [1]. Initially

asymptomatic for several years, the glaucoma develops grad-

ually and painlessly. Elevated IOP is the strongest risk factor

leading to the loss of peripheral vision and, in an advanced

state, irreversible blindness. However, early detection and

treatment can slow, or even halt the progression of the

disease. Hence, it is important to develop clinical routines for

progression detection in order to avoid permanent damage to

the optic nerve head.

Since Hermann von Helmholtz invented the ophthalmo-

scope in 1851, physicians were able to examine the disc

clinically and identify damages in the optic nerve head
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associated with glaucoma. This requires identification of the

outer and inner borders of the neuroretinal rim and visual

estimation of the amount of rim tissue. However, the inner

and the outer borders of the ONH neural tissue are not always

visible by clinical examination techniques [2]. Furthermore,

the clinical examination of the ONH remains subjective,

qualitative and variably reproducible [3].

Advances in optical coherence tomography (OCT) have

provided a noninvasive optical imaging technique that has

been used to evaluate structural changes in the ONH and

particularly the rim area. Recently, spectral domain OCT (SD

OCT) advances have brought a significant improvement in

image capture speed and resolution and exhibit some of the

characteristics of a good diagnostic tool such as high sensi-

tivity and specificity, good reproducibility, ability to detect

change over time, simplicity in usage and interpretation and

convenience for both patient and physician [4].

Several studies have proposed the Bruch’s membrane

opening (BMO) (i.e; the termination of the Bruch’s mem-

brane (BM) layer) as a reference point from which rim

parameters of the ONH can be computed [5]. Hence, rim

area quantification requires the identification of the BMO

(the inner border) and the internal limiting membrane (ILM)

(the outer border).

Many advances have been made to identify different

ONH layers. In [6], authors proposed a diffusion filtering

methodology to denoise and to detect the layers instead

of the traditional image thresholding. However, the edge

information could be lost in the denoised images which

limits the use of the method particularly when the layers

overlap. In [7], authors used multi-scale 3-D graph search

for segmenting the optic nerve head. As a cost function,

the gradient magnitude of the dark-to-bright and bright-to-

dark transitions from top to bottom of the OCT volume was

calculated. This technique was used also in [8]. While the

estimation of the ILM is easy to perform (the border of the

ONH tissue), the estimation of the layers highly depends on

the accuracy of the estimated gradient-based dark-to-bright

and bright-to-dark transitions which can be a major drawback

for poor quality and noisy images, particularly in the BM

area. Due to these limitations, physicians still commonly rely

on manual segmentation of ONH structures [2], [5] which

is a time-consuming process that is impractical for routine

clinical use.

A challenge in BMO identification is how to determine

whether the algorithm is correctly identifying the BMO,
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and is able to differentiate between the BM layer and the

border tissue of Elschnig. This is particularly challenging

when there is an overlapping of these structures (and others)

due to the poor image resolution. Moreover, a poor signal

to noise ratio can affect the accuracy of BMO identification

result when the noise is not taken into account within the

identification scheme.

In this paper, we propose a new segmentation algorithm

for the identification of the for BM segmentation and BMO

identification:

1) In contrast to [6], and in order to develop a noise robust

algorithm, we propose the consideration of the BMO

segmentation problem as a missing data problem where

we jointly estimate the noise hyper-parameters and the

segmented image. To deal with the overlapping of the

BM and the border tissue of Elschnig layers due to

the poor image resolution, we propose the use of an

image deconvolution approach [9] which consists of

assigning to each layer a specific shape (or filter) and

then estimate its hyper-parameters.

2) To overcome the problem of presence of gaps and/or

lack of good quality scans, we propose the use of a new

regression method to estimate the optic disc size and

rim area. In fact, in the segments of the ONH with poor

quality, the BMO points are considered as inaccurate

data and the available BMO points in the good quality

segments of the ONH are then mainly used to estimate

the inaccurate BMO. In order to inject the connected

shape aspect of the BMO (i.e. the elliptical aspect) in

our regression algorithm, we propose the use of the

artificial neural network principal component analysis

(ANN-PCA) [10], which allows us to properly model

such aspect.

The remainder of this paper is divided into three sections. In

section II, the proposed BM layer segmentation is presented.

We describe in section III the BMO regression scheme to

estimate the optic disc size and rim area. Then, in section

IV, results obtained by applying the proposed scheme to

real data are presented. The rim area measurements using

the current approach were compared to those from the built-

in software of Cirrus HD-OCT (Optic disc Cube 200x200,

Cirrus OCT). The diagnostic accuracy of rim area, and rim

to disc area ratio also was compared to the diagnostic accu-

racy of global RNFL thickness measurements provided by

two commercially available SD-OCT devices using receiver

operating characteristic curve analyses.

II. BRUCH’S MEMBRANE LAYER SEGMENTATION

In this work, we consider 3D Spectralis SD-OCT images

(Heidelberg Engineering) radial scan images. Each 3D image

consists of 48 enhanced depth imaging radial 2D B-scans

centered on the optic nerve head (c.f. Fig.1). We denote by

Yk a given B-scan, k = 1 : 48. Each B-scan (M x N )

consists of several inter-retinal layers (e.g; the BM layer, the

Retinal Nerve Fiber layer (RNFL),...). We assume that every

layer to be segmented follows a Gamma distribution and

extends across the entire width of the image. Because the

Fig. 1. 3D Spectralis SD-OCT images (Heidelberg Engineering) radial
scan.

inter-retinal layers have different thicknesses, each layer can

be defined by a curve modeling its skeleton and a filter or set

of filters modeling its thickness. We denote by Xk the image

containing the skeletons of different inter-retinal layers, the

relation between Yk = yk(i, j) i = 1...M , j = 1...N and

Xk = xk(i, j) can be expressed as a convolution product:

yk(i, j) = (ak(i, j).xk(i, j)) ∗ h(i, j) + bk(i, j). (1)

where ∗ is the convolution operator, h(i, j) are the filters

modeling the thickness of the layer at (i, j), Ak = ak(i, j)
i = 1...M , j = 1...N is the image intensity of the layer

at (i, j) and Bk = bk(i, j) is white additive Gaussian noise

with standard deviation σ. To segment the different layers,

it is sufficient to estimate their skeletons Xk and the hyper-

parameters of the filters h(i, j). In this paper, we are only

interested in the segmentation of the BM layer. The direct

model is then expressed as:

yk(i, j) = (ak(i, j).xk(i, j)) ∗ h(i, j) + rk(i, j). (2)

where xk(i, j) = 1 if the the pixel at (i, j) belongs to

the skeleton of BM, otherwise xk(i, j) = 0, and rk(i, j)
consists of the additive noise b(i, j) and the rest of the

other layers. For simplicity’s sake, we will assume that the

filters h(i, j) are Gaussian with the same hyper-parameter. In

order to build connected skeletons, we considered an object-

oriented approach rather than the pixel-oriented approach

[11]. Therefore, short segments (20 pixels in our case) are

added to or deleted from the current configuration depending

on their state (connected or not). Note that shorter segments

have been considered in the termination of the skeletons for

a better estimation accuracy. The estimation of the model

parameter and hyperparameters are addressed using a Monte

Carlo Markov Chain [12].

III. OPTIC DISC SIZE ESTIMATION

Once we estimated separately the BMO points in each

image of the 48 B-scans, we consider the whole 3D volume

to estimate the optic disc size and then the rim area. In [13],

[14], authors manually selected the BMO and then used a

simple spline method to derive a closed curve representing

the BMO around the ONH. However, this method is not
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adapted to our scheme because the BMO were automati-

cally estimated and therefore, we need a more sophisticated

approach to overcome the problem of gaps presence due the

blood vessels and/or lack of good quality scans.

Hence, our aim is 1) to properly integrate the elliptical shape

of the BMO curve and 2) to only rely on the reliable BMO

points in the estimation scheme. Note that our aim is not

to fit an ellipse to the data but to use the elliptical shape

as prior shape to estimate the curve that best represent the

data. An elegant way to address this task is to use the

inverse artificial neural network ANN-PCA to model the

elliptical shape of the BMO curve. The ANN-PCA [15]

has proved its high accuracy to model the non-linear PC in

many field such as the electroencephalography signal [16]

and metabolism [17]. The proposed method was inspired

from [10] where authors adapt the network to the case of

circular curve and missing data. We extended this work to

the case of elliptical curve and unreliable data. The proposed

network is presented in Fig. 2. The output ŷi depends on the

observation yi, the input xi and the network weights W =
{W1,W2,W3}. In order to obtain a elliptical constraint, the

couple (z1, z2) (Fig. 2) are constrained to lie on an ellipse

(z2
1
)/a2 + (z2

2
)/b2 = 1 where a, b are the hyper-parameters

of the ellipse and z1 = w1(1, 1).x1 + w1(2, 1).x2 and

z2 = w1(1, 2).x1 +w1(2, 2).x2. The aim is then to estimate

the function Φgen(.) which generates ŷk by minimizing the

error function depending on W , (a, b) and z = (z1, z2):

E(w, x, a, b) =

K∑

k

||ŷk − yk||
2 (3)

where ŷk = W3.f(W2.z) and f is an activation function.

This error function can be minimized using the gradient

optimization algorithm [18] and the derivation of the network

weights W are obtained by standard back propagation [19].

As one can see, all the estimated BMO points equally

contribute to the error function E. In order to penalize the

unreliable BMO points (e.g; the BMO points belonging to

noisy scans), we propose to modify the error function (Eq.

3) by assigning to each BMO point a new hyperparameter

0 ≤ αk ≤ 1 modeling its accuracy:

E(w, x, a, b) =

K∑

k

αk||ŷk − yk||
2 (4)

The more the BMO estimation is accurate, the more αk is

close to 1. In this work, we used the signal to noise ratio SNR

parameters of each B-scan to set αk: αk = 0.1 if SNR< 10,

αk = 0.5 if SNR< 20 and αk = 1 otherwise. By this way,

the error introduced by an inaccurate BMO point is penalized

and it partially contributes to the gradient. Note that when

the segmentation algorithm fails to identify the BMO in a

given scan, αk is set to 0 (missing data case).

IV. EXPERIMENTS

In this section, we first assess the proposed BMO identi-

fication scheme. Then, we compare the obtained rim area

measurements using this approach to those from built-in

Fig. 2. A standard MLP network with elliptical associative topology. This
network is composed of 3 parts [1-1-2]. The first two layers aim at modeling
the elliptical constraint (the bottleneck layer). The last two layers aim at
reconstructing the data to ŷi thanks to Φgen function.

software of Cirrus HD-OCT. Finally, the diagnostic accuracy

of the estimated rim area and rim to disc area ratio using the

SD-OCT images was also compared to diagnostic accuracy

of 1) global RNFL thickness measurements provided by two

commercially available SD-OCT devices (Cirrus HD-OCT

and Spectralis SD-OCT) and 2) the rim area and rim to disc

area ratio provided by Cirrus HD-OCT.

The proposed framework was experimentally validated

with real datasets. Eligible participants were recruited from

the University of California, San Diego (UCSD) Diagnostic

Innovations in Glaucoma Study (DIGS). The glaucoma diag-

nostic accuracy (area under receiver operating characteristic

(AUROC)) was estimated using 105 glaucoma and 100

healthy eyes.

In order to evaluate the BMO segmentation scheme, an ex-

pert manually identified the BMO on 80 B-scans (one vertical

(12:00 to 6:00 o’clock position) and one horizontal (9:00 to

3:00 o’clock position) of 20 normal and 20 glaucomatous

eyes). The automated segmentation failure rate (the number

of B-scans where neither of the two BMO positions was

segmented) ranged from 0 to 2, by definition (0 when the

mean difference < 3 pixels, 1 when the mean difference < 5
pixels and 2 when the mean difference > 5 pixels). In 74 B-

scans (92.5%), the failure rate was 0, in 5 B-scans (6.25%),

the failure rate was 1 and in 1 B-scans (1.25%), the failure

rate was 2.

Fig. 3 presents an example of BM segmentation result

using the proposed method and the recently described multi-

scale 3-D graph search method [7]. As one can see, the graph

method confounds the border tissue of Elschnig with the

BM layer which is not the case with the proposed method.

Note that because no other dedicated BMO segmentation

algorithm is available, no comparison to other methods on the

same dataset was conducted in this paper. However, we have

compared the BMO-based disc area and rim area estimated

with the proposed approach using Spectralis EDI radial scans

to those from built-in software of Cirrus SDOCT device. The

coefficient of determination r2 between the two devices for

the BMO-based disc area was r2 = 0.845 (p-value <0.001)

and for the rim area was r2 = 0.783 (p-value <0.001).
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(a) (b)

Fig. 3. (a) BM segmentation using the proposed method, (b) BM
segmentation using [7]

Feature(s) Spectralis (95%CI) Cirrus ∗ (95%CI)

Global RNFL
thickness∗

0.918 (0.85-0.96) 0.908 (0.81-0.94)

Rim Area∗∗ 0.87 (0.75-0.94) 0.82 (0.71-0.91)

Rim to Disc
Ratio∗∗

0.81 (0.69-0.89) 0.75 (0.62-0.84)

Rim area ∗∗ and
RNFL thickness∗

0.935 (0.87-0.98) 0.913 (0.84-0.96)

TABLE I

GLAUCOMA DIAGNOSTIC ACCURACY (AREA UNDER RECEIVER

OPERATING CHARACTERISTIC CURVE (AUROC)) WITH 95%

CONFIDENCE INTERVAL. ∗ MEASUREMENTS PROVIDED BY THE BUILT-IN

SOFTWARES OF SPECTRALIS AND CIRRUS SD-OCT DEVICES AND ∗∗

MEASUREMENTS OBTAINED BY THE PRESENT METHOD.

The diagnostic accuracy of rim area, and rim to disc area

ratio were compared to Retinal Nerve Fiber Layer (RNFL)

thickness measurements and the combination of rim area and

RNFL thickness for glaucoma detection. We used STATA

SE software (Stata Corporation, College Station, TX, USA)

to estimate the area under receiver operating characteristic

curve using the bootstrap method [21]. Results are presented

in Tab. I. The diagnostic accuracy of RNFL thickness tended

to be better than rim area and rim to disc ratio but varied by

instrument. The combination of the RNFL thickness and the

rim area led to the best diagnostic accuracy.

V. CONCLUSION

In this paper, a new method for Bruch’s membrane layer

segmentation has been proposed. We particularly focus on

the formulation of the segmentation problem as a missing

data problem. The task of estimating the optic disc size and

then the rim area is tackled with an inverse artificial neural

network ANN-PCA approach to model the elliptical shape of

the BMO curve and to deal with inaccurate BMO estimation.

The validation of the proposed approach with real data has

shown high correlation with the expert manual segmentation

and the built-in software of Cirrus SDOCT device measure-

ments. AUROC results suggest that the combination of the

RNFL thickness and the rim area measurements is a good

choice for discriminating between glaucoma and healthy

eyes.
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