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Abstract— This paper explores differences between two meth-
ods for Blind Source Separation within frame of ECG de-
noising. First method is Joint Approximate Diagonalization of
Eigenmatrices, which is based on estimation of fourth order
cross-cummulant tensor and its diagonalization. Second one is
the statistical method known as Canonical Correlation Analysis,
which is based on estimation of correlation matrices between
two multidimensional variables. Both methods were used within
method, which combines the Blind Source Separation algorithm
with decision tree. The evaluation was made on large database
of 382 long-term ECG signals and the results were examined.
Biggest difference was found in results of 50 Hz power line
interference where the CCA algorithm completely failed. Thus
main power of CCA lies in estimation of unstructured noise
within ECG. JADE algorithm has larger computational com-
plexity thus the CCA perfomend faster when estimating the
components.

I. INTRODUCTION

In 1998 Wisbec et al. published a manuscript describing
deployment of ICA on ECG obtained from 8 precordial
electrodes [1]. In the same year Barros et al.[2] presented
their contribution on ECG source separation using ICA
neural network implementation. Following these two pilot
works in discussed field other researchers provided their
solutions [3], [4], [5], [6], [7], [8].

There exist several works from area of functional magnetic
resonance imaging (fMRI). Thomas et. al [9] proposed a so-
lution for noise reduction of noise within BOLD-based fMRI
using Principal and Independent Component Analysis (PCA
and ICA). Another study related to our work was reported
by Liu et al. [10]the researchers used Canonical Correlation
Analysis (CCA) with Singular Value Decomposition (SVD)
to reduce noise contained in fMRI.

This paper deals with ECG de-noising using two different
methods - Join Approximate Diagonalization of Eigen matri-
ces (JADE) and Canonical Correlation Analysis (CCA). Both
methods were applied on data using methodology described
in [11]. This paper explores main differences between these
two methods, when applied on ECG data with low number
of recorded leads (holter ECG, etc.).

II. DATA

Evaluation database was formed by signals from databases
available on MIT data storage Physionet [12]: Normal Sinus
Rhythm database, European ST-T database, Long Term ST
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database, QT database, MIT Long Term database and MIT-
BIH ST Change database. This gives us a database containing
382 ECG recordings from different sources. All recordings
were resampled to sampling frequency 500 Hz in order to
make the evaluation easy to interpret.

III. METHODS

A. Blind Source Separation

For ”detection” of independent sources in our case -
ECG and noise presented in ECG recordings one can use
several different approaches. Each is solution of the Blind
Source Separation problem (BSS), which can be defined as
extraction of a signal set based on knowledge of their mix-
tures only[13]. Basic BSS model assumes linear combination
mixing signals (components):

X = AS, (1)

where X is a mixture of source signals S mixed by matrix
A. Mixture matrix A is considered squared, which does not
need to be in general. Components are then obtained:

S = A−1X = WX, (2)

where matrix W is inverse to matrix A. Estimation of a
components can be reduced to search of matrix W. In
general all BSS methods estimate source signals that are as
independent/uncorrelated as possible.

B. Joint Approximate Diagonalization of Eigen matrices

Joint Approximate Diagonalization of Eigen matrices al-
gorithm (JADE) is blind source separation method based on
diagonalization of fourth-order cumulant tensor. This tensor
contains all fourth-order information [13]. The cumulant ten-
sor is a linear operator defined by the fourth-order cumulants
defining linear transformation in the space of n×n matrices.
The i, jth element of matrix given by transformation Fij

is defined as [13]:Fij(M) =
∑

klmklcum(xi, xj , xk, xl),
where mkl are the elements of transformed matrix M.
Considering whitened data: z = Vx = VAs = WT s,
where V is whitening matrix, x are mixed signals, A is
mixing matrix and s are source signals, the cumulant tensor
of z has structure that can be interpreted as the eigenvalue
decomposition. It can be shown that [13]:

Fij(wmwT
m) = wmiwmjkurt(sm), (3)

where kurt(sm) is kurtosis of corresponding source signal
sm. If we knew eigenmatrices we could easily obtain inde-
pendent components. In real world problems the model does
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not hold exactly and exact diagonalization is almost impossi-
ble [13]. Thus during diagonalization measuring diagonality
of matrix WF(M)iW

T is needed[13]:

JJADE(W) =
∑
i

||diag(WF(M)iW
T )||2, (4)

where ||diag()||2 means sum of squares of the diagonal.
The crucial is selection of set of matrices Mi. One possible
choice is to take the eigenmatrices of the cumulant tensor,
which is exactly what JADE algorithm does [13].

C. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is statistical tech-
nique developed by H. Hotelling [cit 10], which measures
linear relationship between two multidimensional variables.
CCA is invariant to affine transformations of the variables.
Let assume measured signals xi(t) and their time delayed
versions xi(t− k) now we can define k-step autocorrelation
of component si(t) = WiX(t), where Wi is corresponding
row of de-mixing matrix, can be expressed as follows:

ρi =
WiCx(t)x(t−k)Wi√

WiCx(t)x(t)Wi

√
WiCx(t−k)x(t−k)Wi

, (5)

where Cx(t)x(t) denotes covariance matrix of vector x(t).
Cx(t)x(t−k) and Cx(t−k)x(t−k) is defined in similar way. Au-
tocorrelation reaches maximum when Wi satisfies equation:

C−1
x(t)x(t)Cx(t)x(t−k)C

−1
x(t−k)x(t−k)Cx(t−k)x(t)Wi = ρ2iWi.

(6)
We can observe that ρ2i is an eigenvalue of of matrix
C−1

x(t)x(t)Cx(t)x(t−k)C
−1
x(t−k)x(t−k)Cx(t−k)x(t) and Wi is an

eigenvector associated with corresponding eigenvalue, thus
we can find several pairs of vectors [W1, ...,WL], where L
is number of estimated mutually uncorrelated components
si. Covariance matrices can be estimated as:

Cxy =
1

T

T∑
t=1

x(t)y(t), (7)

where x and y are corresponding vectors - in our case x(t)
or x(t− k). For our purposes we used delay k = 1.

D. BSS for de-noising

For testing we used framework proposed in [11] the ECG
de-noising algorithm combines BSS with CART decision
tree in order to identify and remove noise from ECG. The
algorithm work-flow is shown in Figure 1. Firstly mean
is subtracted from ECG recording. Then the independent
components using BSS (JADE or CCA) are estimated. For
each component set of features were computed:

• Mean of component
• Variance of component
• Kurtosis of component
• Standard deviation of component peak-to-peak dis-

tances
These features are passed to trained decision tree (for training
Gini’s impurity criterion and cross-validation pruning were
used), which decides whether component is noise or ECG

Fig. 1. ICA based noise removal algorithm work-flow. First data is
preprocessed, then the components are estimated. After that components
containing noise are identified and removed. Finally ECG is reconstructed
and filtered using post-processing filter.

containing. The tree is trained using components obtained
using MIT/BIH Arrhythmia database and artificially gener-
ated noise. All training components were annotated and then
used for training the decision tree.
Finally components marked as noise are removed, all com-
ponents are projected back to signal domain, filtered to
remove high frequency noise (observed on 4 cases of training
database) using low pass filter with first zero at 117 Hz, delay
5 samples and gain 0.93.

E. Evaluation

For evaluation we used Root-Mean-Square Error
(RMSE), which is good statistical index for case, when
the original clear signal is known. RMSE is defined as:

RMSE =

√√√√ 1

N

N−1∑
i=0

(xi − yi)2, (8)

where xi is the i-th sample of original signal, yi is the i-th
sample of filtered signal and N is the number of samples in
both signals. RMSE equal to zero means that original and
filtered signal are identical.
During the evaluation process several steps were passed in
order to explore performance of methods. First the data
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were mixed with the simulated noise: EMG noise (random
Gaussian signal), Power line interference (50 Hz sinusoid),
Baseline wander (0.333 Hz sinusoid), Electrode cable move-
ment (sum of sinusoids with amplitudes and frequencies
ranging from 0.1 to 1 mV and 1.5 to 8 Hz). Each type of
noise is added to ECG at 25, 50, 75, 100 percent of the
maximum noise amplitude levels.

Then de-noising was applied on the data and the results
were obtained. Finally resulting signals were compared to
the original ECG data using RMSE measure and the result
is stored for the evaluation.

IV. RESULTS AND DISCUSSION
We performed statistical testing of RMSE obtained as a

result of comparison between original and filtered signals.
The results are summarized using boxplot figures (Fig. 2, 3,
4, 5). Each figure contains 10 boxplots, which are linked
to one type of noise. Boxplots are grouped according to
the level of noise added to the original recording during
the testing. Each boxplot has ”notches”, which shows 95%
confidence intervals for null hypothesis that RMSE differs
from others. If the confidence intervals are overlapping then
we reject the null hypothesis.
Figure 2 shows the comparison of results on ECG con-
taminated by electrode cable artefact. We can observe that
JADE based de-noising performed better than CCA based de-
noising. Specially in case of noise with higher amplitude. The
main reason for this is that electrode cable movement artefact
is structured type of noise and CCA is good for uncovering
structured elements of signals. Thus it has problems when
noise is structured, because ECG is structured too.

Fig. 2. Results for the electrode cable movement artefact. Horizontal axis
shows level of added noise. Boxplots shows RMSE for used database of
signals.

Figure 3 shows the results for ECG mixed with EMG.
We can observe that both algorithms performed in similar
way. The EMG noise was simulated as white noise thus it
has no structure and the ECG containing components were
identified and noise is reduced in both cases.

Fig. 3. Results for EMG artefact. Horizontal axis shows level of added
noise. Boxplots shows RMSE for used database of signals.

Figure 4 shows the results of ECG modulated by base line
wander. Again we can see that JADE is slightly better than
CCA, but the performance of both methods is in general the
same.

Fig. 4. Results for the base line wander artefact. Horizontal axis shows
level of added noise. Boxplots shows RMSE for used database of signals.

Finally figure 5 shows the results on recordings contam-
inated by power line interference. The CCA is failing in
this case in reduction of this type of noise. This is most
probably due to simulation of noise using 50 Hz sinus, but
this also shows the biggest problem of method in application
to ECG de-noising - structured noise cannot be efficiently
distinguished from the ECG activity.

Figures 6 and 7 show the main difference between JADE
component estimation and CCA component estimation. Be-
cause the CCA uses the correlation as a measure of ”inde-
pendence” it is unable to separate power line interference
and ECG - both of them hasse large correlation and their
mixture has it too, thus CCA, which is based on uncovering
structures in signals, cannot efficiently separate ECG and
noise (Fig. 7). On the other hand ECG has super-Gaussian
distribution [3] thus kurtosis based JADE is able to separate
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Fig. 5. Results for the power line interference artefact. Horizontal axis
shows level of added noise. Boxplots shows RMSE for used database of
signals.

ECG and noise to different components (Fig. 6).

Fig. 6. Example of estimated ECG components using JADE algorithm.

Fig. 7. Example of estimated ECG components using Canonical Correlation
Analysis.

V. CONCLUSIONS
This work uncovers differences between CCA and JADE,

we observed that in case of unstructured noise (EMG) CCA
performance was similar to JADE. On the other hand when
noise shows any structure the CCA starts to have difficulties
in separation of noise and ECG. We observed that biggest
difference in results was in case of 50 Hz power line
interference where the CCA algorithm completely failed.
Thus main power of CCA lies in estimation of unstructured
noise within ECG. The second difference, which has been
observed during the experiments that the JADE algorithm
has larger computational complexity due the estimation of
kurtosis and Given’s rotations used for estimation of indepen-
dent components. Thus the CCA is performing faster when

estimating the components.
BSS methods suffer in general with environment changes and
thus more precise testing needs to be implemented. We can
assume that the general structure of the algorithm remains
unchanged because the main idea is to search for the ECG
activity within noise and thus we can assume that the ECG
characteristics will remain the same. We are also planning
experiments with segmentation and its effect on algorithm
performance.
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