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Abstract— EEG-correlated fMRI analysis has proven to be
useful in localizing regions of BOLD activation related to
epileptic activity. However, as EEG does not always provide
reliable information, purely fMRI-based data-driven techniques
are invaluable. Recently, we have shown that independent
component analysis (ICA) can extract sources related to the
epileptic network even in such EEG-negative cases [1]. More-
over, these sources were shown to be informative with respect
to the seizure onset zone (SOZ). In order to utilize this
concept in clinical practice in a prospective manner, this work
aims at developing an automatic technique for selecting the
epileptic sources. The proposed approach applies a cascade
of two classifiers. In the first step artifact related sources are
discarded. In the second step the sources are characterized by
four discriminative features and epileptic sources are selected
from among other BOLD-related components. Our technique
reaches a promising 77% specificity and provides concordant
sources with the EEG-correlated fMRI activation maps or with
the SOZ in 71% of the cases.

I. INTRODUCTION

Epilepsy is a neurological disorder, affecting 1% of the
worldwide population. The manifestation of this disease
is the epileptic seizure, an abnormal, synchronous activity
of the neurons in the brain. More than 30% of epilepsy
patients continue to have seizures despite of medication,
hence their quality of life is seriously compromised. Surgical
resection of the epileptogenic focus might offer cure for these
patients. The success of the surgery strongly depends on the
accurate identification of the brain region responsible for the
generation of seizures.

In recent years many research have shown the usefulness
of EEG-correlated fMRI analysis for this purpose [2]. This
approach heavily relies on the visual identification of inter-
ictal epileptic discharges (IEDs) in the EEG. However, EEG
does not always provide accurate information, due to bad
signal quality, or simply due to the absence of IEDs during
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the limited time of the recordings. Purely fMRI-based data-
driven approaches are invaluable in such cases.

Relying on the assumption that the sources generating
the measured blood oxygen level dependent (BOLD) signals
are mutually statistically independent in space, independent
component analysis (ICA) has been used in numerous fMRI
studies. It has successfully extracted sources related to
epileptic activity from fMRI time series recorded during
ictal [3] and interictal [4] period. In the latter case ICs
were automatically assigned to an artifact related or to a
BOLD signal related group using the technique presented
by [5]. Within the BOLD related class the epileptic ICs
were identified based on the known timing of the epileptic
events observed on EEG. However, the application of ICA
is of particular interest in those cases where no epileptic
events can be identified during the recordings. Recently, we
have proven in a retrospective manner that ICA can extract
sources related to the epileptic network [1] even in such
EEG-negative cases. Moreover, these sources were shown
to be informative with respect to the seizure onset zone
(SOZ). In order to put this theoretical concept into practice,
the epileptic source has to be selected blindly. Therefore,
the goal of the current paper is to develop a prospective
technique which can automatically select the epileptic fMRI
source independently from EEG information.

II. MATERIALS AND METHODS
A. Data collection

For the purpose of this study patient data were included
based on the following criteria: (1) consecutive adults who
underwent a full presurgical evaluation for refractory focal
epilepsy between August 2010 and November 2013 (2)
concordant data pointing to one epileptic focus using all
presurgical investigations, including EEG-correlated fMRI
(3) identical recording parameters (TE = 33ms, TR = 2.5s,
voxel size 2.6×3×2.6 mm). Finally, one recording session
was selected arbitrarily from each patient. The final dataset
consisted of the interictal fMRI time series of 10 patients.

In addition, fMRI data from 13 healthy individuals were
included as well, in order to assess the behavior of the
proposed method in the absence of pathological activity.

All fMRI images were realigned, slice-time corrected,
normalized to MNI space and spatially smoothed with
an isotropic Gaussian kernel of 6 mm full width at half
maximum. EEG-correlated fMRI analysis was performed
within the general linear model (GLM) framework using the
SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8). The timing of the preponderant
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IEDs convolved with the hemodynamic response function
was used as a regressor of interest. The six rigid-body motion
correction parameters, the fMRI signal averaged over the lat-
eral ventricles, and the signal averaged over a region within
the white matter were included as confounding covariates.
The activation maps were thresholded at a significance level
of p < 0.05 with family wise error correction.

B. Blind selection method: overview

As a first step, ICA is performed on the fMRI time
series. Consecutively, a cascade of classifiers is applied: after
discarding artifact related ICs in the first classification step,
the epileptic ICs are selected from the remaining reduced
set of BOLD related ICs using the second classifier. Finally,
localization information is retrieved from the spatial map
corresponding to the epileptic ICs.

The ICA step and the discrimination between BOLD
and artifact related ICs, together with the corresponding
feature extraction was performed using the Fix plug-in
of the FSL toolbox (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FIX). Detailed explanation about the ex-
tracted features and the applied classification technique is
available in [6]. The contribution of this paper is the de-
velopment of the features and the classifier for the second
discrimination step in the cascade. These steps are explained
in detail below.

C. Feature extraction

The aim of this study is to automatically select epileptic
independent components. In [1] we argue that there might be
multiple ICs corresponding to partially overlapping parts of
the epileptic network, reflecting different aspects of epileptic
activity. However, considering that the automatic recogni-
tion of an epileptic IC corresponding to the SOZ would
be the clinically most relevant finding, we concentrate on
characteristics which are peculiar to such ideal components.
Therefore, the following features were extracted from the
fMRI ICs.

Number of clusters. Suprathreshold voxels in the spatial
map corresponding to an IC are spatially organized in one
or more clusters. We only take into account clusters which
comprise at least 30 suprathreshold voxels. The number of
activation clusters in an epileptic IC is ideally 1, correspond-
ing to the SOZ. In contrast, various resting state networks
(RSNs) consist of multiple active regions.

Activation asymmetry. The SOZ of a unifocal epilepsy
patient is restricted to a region in strictly one hemisphere,
thus will show asymmetry. The activation asymmetry of an
IC is assessed by the following formula:

AA = |
H

∑
i=1

v(l)i − v(r)i |, (1)

where v(l)i denotes the ith voxel in the left hemisphere, v(r)i
denotes the corresponding contralateral voxel and H is the
total number of voxels in one hemisphere.

Sparsity in activelet basis. Activelets are a recently de-
veloped dictionary of wavelet basis functions [7], which has

been applied to detect interictal epileptic activity from fMRI
[8]. The activelet waveforms were specifically constructed
to fit the BOLD signal in response to a sparse transient
event. As such, the representation of a signal comprising
sparse transient events, such as interictal epileptic spikes,
will be sparse in the activelet basis. Practically, the neural
activity x(t), t = 1, ...,T can be estimated by the linear
combination of a few activelet basis vectors in the dictionary
φ as x̂ = φβ0, where β0 is the solution of the convex l1
optimization problem:

min
β

(
1
2
‖x−φβ‖2

2 +λ‖β‖1) (2)

The regularization parameter λ controls the trade-off be-
tween the sparsity of the solution and the reconstruction er-
ror, a higher value favoring a sparser solution. The value of λ

was set to 2.5 in this study. φ is the overcomplete dictionary
matrix containing the basis functions of the undecimated
activelet transform. It is a matrix of size T ×P, where T
is the length of the time series and P = 3 ·T as the number
of wavelet decomposition scales was set to 3 [8].

The time course of an epilepsy related IC is expected to
have a sparser representation in the activelet basis compared
to non-related ICs. The sparsity of the representation in the
activelet basis was quantified with the Gini index [9], which
measures the statistical dispersion of the magnitude of the
coefficients.

Sparsity in sine dictionary. In contrast, the time course
of resting state networks is characterized by low-frequency
(0.01-0.1 Hz) fluctuations [10]. As such, they have a sparse
representation in a sine dictionary restricted to this frequency
band. A matching pursuit algorithm was used to retrieve the
coefficients corresponding to the best nonlinear approxima-
tion of the fMRI IC. Again, the sparsity was quantified using
the Gini index.

Kruskal-Wallis tests were performed in order to assess
whether the extracted features differentiate between epileptic
and non-epileptic ICs (see below). The distribution of the
feature values are shown in Figure 1. The statistical signifi-
cances are indicated in brackets. The difference of the num-
ber of clusters was marginally insignificant, while the other
features were significantly different between the two groups.

D. Classification

A least-squares support vector machine (LS-SVM) classi-
fier was applied to learn an optimal classifier based on the
above extracted features. A linear kernel was chosen, and
the kernel parameter was tuned using leave-one-component-
out crossvalidation on the training data. Positive training
examples, i.e. the class of epileptic ICs, consisted of the
ICs showing the largest overlap with the cluster containing
the maximally activated voxel in the GLM-based fMRI
activation map in each patient. In addition, ICs which showed
at least 10% overlap with the same cluster and significantly
correlated with the timing of the IEDs, were also included in
the epileptic class. All other ICs were included as negative
training examples, i.e. in the class of non-epileptic ICs.
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Fig. 1: The feature values significantly differ between the
epileptic and non-epileptic ICs, except, the difference in
number of clusters is marginally insignificant.

Note that our final goal is to select an IC which overlaps
with the SOZ, nevertheless, we prefer to define the training
examples based on the GLM-based activation maps for the
following reason. While the SOZ reflect ictal phenomena, in
this study interictal processes were recorded in the fMRI.
We do expect that the fMRI-based maps will contain the
SOZ, but perfect overlap is unlikely. The GLM-based fMRI
maps provide a more reliable image of how the epileptic ICs
should look like.

Recall that LS-SVM takes decisions according to:

y(x) = sign(wT
ϕ(x)+b), (3)

with y(x) ∈ {−1,1} are the class labels, x is the input
pattern, w is a weighting vector, b is a bias term and ϕ is a
feature mapping. A linear kernel, i.e. a linear mapping was
used in this work. Note that this formula might assign mul-
tiple ICs to the epileptic class, however, we are interested in
selecting exactly one epileptic IC in each patient. Therefore,
we modify the decision function as follows:

y(xi) =

{
1 if argmaxx(wT ϕ(x)) = i and wT ϕ(x)+b > 0
0 otherwise.

(4)
This way at most one IC is selected in each patient.

The values wT ϕ(x) determine a ranking of the ICs, the
highest value corresponds to the IC which resembles most the
epileptic ICs in the training data. In case this value exceeds
the threshold −b, the first ranked IC is selected as epileptic.
Otherwise, if no IC shows enough resemblance to the training
epileptic ICs, no selection is made.

The performance of the proposed method was estimated
in a leave-one-patient-out scheme: individual classifiers were
trained for each patient using data from all other patients.

E. Evaluation measures

The voxel values in the spatial maps of the selected ICs
were converted to z-score and thresholded at 5 in order
to obtain highly specific activation maps. Afterwards, the
overlap between the IC activation maps and the SOZ as
well as the GLM-based EEG-fMRI activation map were
assessed. If the cluster containing the maximally activated
voxel overlapped with the SOZ or the GLM-based map, the
IC was considered concordant.

On one hand, an overlap with the GLM-based EEG-
fMRI map indicates that the selected IC represents some
aspect of the epileptic network. On the other hand, a method
selecting an IC which overlaps with the SOZ would have
real clinical significance. Following the considerations made
in [11], sensitivity and specificity of the proposed method
for localizing the SOZ were defined as follows.

Activation maps of the selected ICs overlapping with the
SOZ were considered true positive cases. Patients where no
IC was selected or no overlap was found were considered
false negative cases. In order to define specificity, the data
from healthy controls were analyzed. Controls where no IC
was selected or the selected IC contained no suprathreshold
voxels were considered true negatives, and others false
positives. Finally, sensitivity and specificity was calculated
with the standard formula:

Sensitivity =
true positive

true positive+ false negative
(5)

Specificity =
true negative

true negative+ false positive
(6)

Fig. 2: Patient 6. The selected IC is indicated in yellow, while
the SOZ (i.e. focal cortical displasia) and the GLM-based
activation map are indicated in red and violet, respectively.

III. RESULTS

An IC was selected in 7 out of 10 patients. As an example,
the selected IC, together with the SOZ and the GLM-based
activation map of patient 6 are shown in Figure 2.

In 6 out of the 7 cases where a selection was made,
the selected IC overlapped either with the SOZ or with
the GLM-based EEG-fMRI activation map. Moreover, the
cluster containing the maximally activated voxel overlapped
either with the SOZ or with the GLM-based map in 5 out
of 7 cases. These results indicate that the method is very
selective for components related to the epileptic network.

3855



However, an IC overlapping with the SOZ was selected
only in 4 cases, i.e. the proposed method has a sensitivity of
40% for localizing the SOZ. Looking at the cluster with the
maximally activated voxel, the sensitivity drops to 30 %.

Nevertheless, the method selected an IC in only 3 controls
out of 13, corresponding to a specificity of 77%. This further
supports that the ICs selected in patients are truly related to
epilepsy.

The low sensitivity for selecting the SOZ is partly ex-
plained by the fact that we insist on selecting one IC per
patient. However, there is strong evidence that in some
patients more than one epileptic IC is present. Patients 3,
4, 5 and 9 showed more than one type of IEDs in the
simultaneously recorded EEG. While the GLM activation
maps based on the preponderant spike type overlaps with the
SOZ in most cases [11], BOLD activations corresponding to
other spike types may be remote from the SOZ. In fact, the
IC activation maps selected in patients 3 and 5 correspond to
the field of the secondary spike type. The ICs of the epileptic
class, i.e. the ones concordant with the GLM maps based on
the preponderant spike type, were ranked on average 3rd
out of 39 across all patients. This high average ranking
suggests that ICs reflecting different aspects of epileptic
activity compete for the first ranked position.

IV. DISCUSSION

In this paper an automatic method was developed which
selects the epileptic source among fMRI ICs. To this end,
artifact related ICs were first rejected using a recently in-
troduced and online available technique [6]. Subsequently,
the remaining BOLD related ICs were characterized with
four features, which were fed to a LS-SVM classifier. The
proposed technique was evaluated on a dataset including
fMRI recordings of 10 focal epilepsy patients and 13 healthy
controls. It reached 77% specificity, indicating that the
proposed technique reliably selects ICs related to epileptic
activity. Indeed, in the vast majority of patients where a
selection was made, the selected IC overlapped either with
the SOZ or the GLM-based map.

Considering the small size of the patient group, these
results are only preliminary, however, promising. The perfor-
mance of our technique is in line with the results obtained
with another fully blind approach [8] using an activelet based
representation and spatiotemporal clustering of the fMRI
voxel time series. This approach performed very well on
fMRI runs with only a few epileptic events as these data
matched the sparsity assumption of the method. However, in
a group of runs containing more than five events, 69% of the
obtained activation maps were concordant with GLM acti-
vation maps. Our technique, tested on patients who showed
plenty of IEDs, provided maps concordant with the GLM
activation maps or with the SOZ in 5 out of 7 cases (71%).

Although we emphasized in [1] that multiple epileptic ICs
may exist in each patient, we insist on selecting exactly
one. The goal is to pinpoint an epileptic IC which can help
identifying the SOZ without any further visual inspection
or prior information from other modalities. An inherent

limitation of our algorithm in its current stage is that it
cannot differentiate between initial and propagated activity
or sources corresponding to different IED types. Allowing
the selection of more ICs per patient presumably increases
the sensitivity of our method. However, manual intervention
would be necessary to determine the one corresponding to
the SOZ based on some prior knowledge, e.g. the spike
field of the preponderant spike type. In order to overcome
this limitation, future work will aim at characterizing the
differences between ICs representing initial (preponderant)
and propagated (secondary) activity.

Note that the dataset used in this study consisted of
patients where IEDs were recorded in the EEG. However,
our methodology is especially relevant in cases where no
epileptic activity is present, hence, GLM-based analysis
cannot be carried out. Therefore, the proposed blind selection
method should be tested on a dataset of EEG-negative cases
as well. We expect that the proposed technique will pinpoint
the SOZ in at least a few such cases, which would yield a
considerable improvement over the state of the art.
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