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Abstract— Online Independent Component Analysis (ICA)
algorithms have recently seen increasing development and
application across a range of fields, including communications,
biosignal processing, and brain-computer interfaces. However,
prior work in this domain has primarily focused on algorithmic
proofs of convergence, with application limited to small ‘toy’
examples or to relatively low channel density EEG datasets.
Furthermore, there is limited availability of computationally
efficient online ICA implementations, suitable for real-time
application. This study describes an optimized online recursive
ICA algorithm (ORICA), with online recursive least squares
(RLS) whitening, for blind source separation of high-density
EEG data. It is implemented as an online-capable plugin within
the open-source BCILAB (EEGLAB) framework. We further
derive and evaluate a block-update modification to the ORICA
learning rule. We demonstrate the algorithm’s suitability for
accurate and efficient source identification in high density (64-
channel) realistically-simulated EEG data, as well as real 61-
channel EEG data recorded by a dry and wearable EEG system
in a cognitive experiment.

I. INTRODUCTION

Independent Component Analysis (ICA), as a means
for blind source separation, has enjoyed great success in
biosignal processing and communications [1]. In biomedical
applications, such as electroencephalography (EEG), the ap-
plication of ICA is justified by the reasonable assumption that
multi-channel scalp EEG signals arise as a mixture of weakly
dependent non-Gaussian sources [2]. In particular, offline
ICA methods have been widely used for separating artifacts
such as eye blinks and muscle activity [3], as well as used
to extract and study activity generated within the brain [4].
However, for many real-world applications, including real-
time functional neuroimaging and brain-computer interfaces
(BCI) [5], online source separation methods are needed.
Desirable properties include fast convergence and real-time
computational performance.

Several online ICA algorithms have been proposed. A-
mongst the most promising candidates are recursive-least-
squares (RLS) type algorithms, extended from iterative
natural gradient optimization of independence-maximizing
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objective functions [6][7]. Akhtar et al [8] proposed an RLS-
type Online Recursive ICA algorithm (ORICA), derived as
a fixed-point solution to the widely-used natural gradient
Infomax ICA learning rule. Infomax ICA has been shown
to outperform most alternative ICA algorithms, in terms of
maximizing independence and biological plausibility of EEG
sources [2]. ORICA builds on an iterative inversion formula,
yielding faster convergence and lower computational load
than the alternatives. However, as with other RLS-type
algorithms, stability, convergence speed, and computational
load are important practical factors to consider.

This study utilizes two approaches to improve perfor-
mance. We combine an optimized implementation of ORICA
with the online RLS whitening filter of [7]. We also derive
a multiple measurement vector (MMV) block-update rule to
increase processing speed without sacrificing performance.
The proposed online ICA pipeline is implemented in MAT-
LAB as a BCILAB plugin [9]. Real-time performance ca-
pability, accuracy, convergence speed, and scalability of the
pipeline is analyzed on a realistic simulation of 64-channel
EEG data. Finally, we demonstrate real-world applicability
of the pipeline for online source separation, with quantitative
and qualitative comparison to EEGLAB’s “gold standard”
implementation of Extended Infomax ICA [10], using 61-
channel dry, wearable EEG data recorded from a subject
performing an Eriksen Flanker task.

II. METHODS

We assume the standard ICA generative model x = As,
where x are scalp EEG observations, s are unknown sources,
and A is an unknown N -by-N mixing matrix. The objective
is to learn an unmixing (weight) matrix W = A−1 such that
the sources are recovered by y =Wx.

A. Online recursive-least-squares (RLS) whitening

Whitening (decorrelating) the data reduces the number of
independent parameters ICA must learn, and can improve
convergence [1]. In order to fit in the online pipeline with
online RLS-type ICA, we use the similar online RLS whiten-
ing algorithm proposed by [7]:

Mn+1 =
1

1− λn
[I − vnv

T
n

1−λn

λn
+ vTn vn

]Mn (1)

where Mn is the whitening matrix, vn = Mnxn is the
whitened data, and λn is the forgetting factor.

As shown in [7], the RLS-type filter converges faster
than a least-mean-squares type filter, e.g. running average
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of covariance matrix. Also, since online RLS whitening
and ORICA have a similar recursive form and adaptation
property, e.g. forgetting rate, they can be easily combined.

B. Online recursive ICA (ORICA)

The ORICA algorithm derives from the general incremen-
tal update form of the well-known natural gradient learning
rule for Infomax ICA:

Wn+1 =Wn + η[I − f(yn) · yTn ]Wn

where yn = Wnxn, η is the learning rate, and f(·) is a
nonlinear projection function. In the limit of a small η and
assuming a fixed f , the convergence criterion 〈f(y)·yT 〉 = I
leads to a fixed-point solution in an iterative inversion form:

An+1 = (1− λn)An + λnxn · fTn (2)

where An is the pseudo-inverse of Wn and λn is the
forgetting factor for an exponentially weighted series of
updates (note that λn differs from η, which is the step size
for stochastic gradient optimization).

Applying the Sherman-Morrison matrix inversion formula
to Eq. 2, the final online recursive learning rule becomes [8]:

Wn+1 =
1

1− λn

[
I − yn · fT (yn)

1−λn

λn
+ fT (yn) · yn

]
Wn (3)

Eq. 3 of ORICA is similar to Eq. 1 of online RLS whitening,
albeit with nonlinear projection f(·) ensuring independence
of sources. ORICA can thus be understood as a nonlinear
form of online RLS whitening.

Following [8], component-wise nonlinear functions are
f(y) = −2 tanh(y) for super-Gaussian sources and f(y) =
tanh(y) − y for sub-Gaussian sources. Also, the heuristic
time-varying forgetting factor is used:

λn =
λ0
nγ

where λ0 is an initial forgetting factor and γ determines the
exponential decay rate of λ.

1) Number of sub- and super-Gaussian sources: While
approaches for adaptively selecting f within ORICA have
been proposed [8], these are heuristic and presently lack con-
vergence proofs. In practice, we find that both convergence
and run-time performance are improved by preassuming a
fixed number of sub- and super-Gaussian sources. A more
extensive characterization of the performance of ORICA with
heterogeneous source distributions is beyond the scope of
this report, and will be the subject of a forthcoming paper.

2) Block-update rule: Performing updates for each sam-
ple can be costly. To reduce the computational load and en-
sure consistent real-time performance, we update the weight
matrix for a short block of samples at once. To achieve this
without loss of accuracy, we solve Eq. 3 for time index l = n
to l = n+L− 1, assuming yl is approximated as Wnxl and
λl is small. This leads to a block-update rule:

Wn+L ≈
( n+L−1∏

l=n

1

1− λl
)
·
[
I−

n+L−1∑
l=n

yl · fT (yl)
1−λl

λl
+ fT (yl) · yl

]
Wn

(4)

TABLE I
LIST OF PARAMETERS FOR THE ONLINE PIPELINE: (A) IIR HIGH-PASS

FILTER, (B) ONLINE RLS WHITENING FILTER , AND (C) ONLINE RECURSIVE

ICA FILTER.
Filters Parameters Values Description

A BW 0.2−2 Hz Transition band

B,C
λ0 0.995 Initial forgetting factor
γ 0.60 Decay rate of forgetting factor
L 16 Block-update size

C nsub
0 (Sim. EEG) Number of subgaussian sources1 (Real EEG)

In this form, the sequence of updates can be vectorized
for fast MATLAB computation. Note that Eq. 4 appropriately
accounts for the decaying forgetting factor at each time point.
This keeps the approximation error to a minimum.

III. MATERIALS

A. Data collection

1) Simulated EEG data: We used the SIFT EEG simula-
tion module, with an approach similar to [11]. We generated
64 super-Gaussian independent source time-series from sta-
tionary and random-coefficient order-3 autoregressive models
(300Hz sampling rate, 10-min), assigned each source a
random cortical dipole location, and projected these through
a zero-noise 3-layer BEM forward model (MNI “Colin27”),
yielding 64-channel EEG data.

2) Real EEG data: Two sessions of high-density EEG
data were collected from a 24 year-old right-handed male
subject using a 64-channel wearable wireless dry EEG
headset (Cognionics, Inc). The first session was a 10-min
resting session. In the second session, the subject performed
a modified Eriksen Flanker task [12] with a 133 ms delay
between flanker and target presentation for 20 minutes.
Flanker tasks are known to produce robust error-related
negativity (ERN, Ne) at frontal-central electrode sites. Our
goal was to extract these ERP components from high-density
EEG data in a real-world setting using the proposed online
ICA pipeline.

B. Online ICA pipeline

Simulated and real EEG data were streamed into MAT-
LAB and analyzed in a simulated online environment using
BCILAB, an open source MATLAB toolbox designed for B-
CI research [9][13]. The pipeline for simulated data consisted
of three filters: a Butterworth IIR high-pass filter, an online
RLS whitening filter, and an ORICA filter. The high-pass
filter removes trend and low-frequency drift, ensuring the
zero-mean criterion for ICA is satisfied. For both datasets,
we chose block size L = 16 to demonstrate the accuracy of
block-update. We set the number of sub-Gaussian sources
to zero for simulated EEG data and one for real EEG
data, allowing for 60Hz line noise. Table I summarizes the
parameters of the three filters.

C. Processing of real EEG data

For Flanker task EEG data, we applied additional pro-
cessing steps and techniques. Firstly, an automatic removal
of bad (e.g. flatlined or abnormally correlated) channels was
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Fig. 1. Source dynamics and the corresponding component maps of
four randomly selected components reconstructed by ORICA at the end
of the time series (blue) superimposed on ground truth (red) with error, i.e.
difference, (green) on simulated EEG data.

applied prior to the online pipeline, using BCILAB routines,
removing 3 channels. Secondly, we warm-started (initialized)
all filters using the first 3 minutes EEG data in the resting
session. This step (offline) costs little computation time and
used no data from the separate Flanker task session, while
accelerating ORICA convergence. Following application of
the pipeline, response-locked event-related potentials (ERPs)
were analyzed offline in EEGLAB [14]. IC time-series (20-
minute session) were epoched around responses in a -400 to
600 ms window, yielding 693 epochs (104 error trials, 589
correct). Error trials were then averaged to produce ERPs.

IV. RESULTS

A. Simulated 64-ch stationary EEG data

1) Evaluation of the decomposed components: Fig. 1
shows a 1-sec segment of reconstructed ORICA IC time-
series (at convergence) superimposed on ground truth. The
error is close to zero.

Fig. 2(a) shows the correlation between spatial filters
learned by ORICA and their ground-truth counterparts, with
component matching via the Hungarian method. All correla-
tions approach 1 by the end of the 10-minute session, albeit
with systematic variation in convergence speed. A common
empirical heuristic for the number of training samples re-
quired for separating N stable (Infomax) ICA sources is
kN2, where k > 25 [15]. For 64 channels, learning requires
64×64×25 = 102400 samples = 5.7 mins. We observe that
77% (91%) of ICs reach a correlation of 0.95 (0.8) within
5.7 minutes (vertical dotted line).

Fig. 2(b) shows the evolution of the spatial filter of a
randomly selected IC (#29), and its correlation with ground
truth. This IC converged to a steady-state correlation of 0.95
in 4 minutes. A global performance index is superimposed
in green.

For a known N -by-N mixing matrix A, the performance
index E characterizes the ICA global convergence property,
defined in [16]:

E = 1
N−1

[
N − 1

2

N∑
i=1

(
max

1≤j≤m
|Cij(n)|2∑N

j=1 |Cij(n)|2
+

max
1≤j≤m

|Cji(n)|2∑N
j=1 |Cji(n)|2

)]
(5)

Fig. 2. (a) Evolution of component-wise correlation between ORICA-
decomposed ICs and ground truth on simulated 64-ch EEG data. ICs sorted
with respect to time required to reach a correlation of 0.95. The dotted line
(5.7 min) is the heuristic time for separating 64 stable ICs. (b) Evolution
of correlation (blue) and spatial filter of a randomly selected IC (#29). One
minus the performance index (green) is superimposed.

TABLE II
AVERAGED EXECUTION TIME FOR 1-SECOND (300 SAMPLES) 64-CH

DATA USING (A) IIR HIGH-PASS FILTER, (B) ONLINE RLS WHITENING

FILTER , AND (C) ORICA FILTER WITH DIFFERENT BLOCK SIZES.

Online filters A B C
Block size − 1 2 1 2 4 8 16
Averaged 1.1 2.4 1.3 460 220 110 54 42execution time (ms)

Run in MATLAB 2012a on a dual-core 2.50GHz Intel Core i5-
3210M CPU with 8GB RAM.

where C(n) =W (n)M(n)A and M is the whitening matrix.
At convergence, C results in a permuted and scaled identity
matrix, and the performance index is close to zero. The
evolution of 1 minus the performance index provided further
proof of convergence. We note the overall trend similarity to
both individual correlation profiles (e.g. IC29) and to the
percentage of converged ICs in Fig. 2(a).

2) Computational load: Table. II shows the average exe-
cution time (MATLAB Profiler) required to apply the entire
pipeline to 1-second of data. Runtime was uniformly less
than one second, demonstrating real-time capability. Note
the execution time of the ORICA filter is nearly halved as
block size doubles when L ≤ 8, with diminishing returns
for L ≥ 16. We confirmed on simulated data that the
approximation error in Eq. 4 was negligible for all examined
block sizes.
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Fig. 3. Evolution of mutual information reduction of sources reconstructed
by ORICA (blue) and the benchmark provided by RUNICA on real 61-ch
EEG data from the Flanker Task.

Fig. 4. Component maps and the corresponding ERPs of (a) frontal-central
and (b) occipital components reconstructed by ORICA and RUNICA on
61-ch flanker task EEG data. Red arrows denote ERN while green arrows
denote VEPs

B. Real 61-ch EEG data from the Flanker task

Since ground truth is unknown for real data, we adopted
as a “gold standard” the offline Extended Infomax ICA al-
gorithm [10], as implemented in the EEGLAB [14] function
RUNICA. The robustness and stability of this algorithm on
high-density EEG data has been shown to outperform most
blind source separation algorithms [2].

Fig. 3 compares ORICA and RUNICA in terms of the
mutual information reduction (MIR) in decomposing channel
data into ICs [2]. At convergence, ORICA achieved an MIR
near that of RUNICA (75 vs. 79 bits). RUNICA’s runtime
was 28.6 minutes with 512 passes through the data, versus a
single, < 1 minute run for ORICA. Note ORICA MIR does
not start at 0 bits, due to warm-starting (Sec. III).

As a further qualitative benchmark, we examined a set of
ORICA and RUNICA ICs with stereotypical fronto-central
and occipital spatial topographies (regions involved in stim-
ulus detection and error processing). Fig. 4 (a) demonstrates
that the ORICA- and RUNICA-decomposed fronto-central
IC topographies and classic ERN ERPs are comparable
and consistent with previous studies [13][17]. Fig. 4 (b)
shows that averaged occipital visual evoked potentials (VEP-
s) elicited by flanker (left green arrows) and target (right
green arrows) presentation are clearly observed using both
methods. This demonstrates ORICA’s efficacy in extracting
informative components and corresponding ERPs in high-
density, real-world EEG data.

V. CONCLUSIONS

This study proposed two procedures to achieve fast conver-
gence and real-time application of online ICA: (1) combining
an optimized implementation of ORICA with online RLS
whitening, and (2) an MMV block-update. Application to
simulated 64-ch and real 61-ch EEG data characterized the
convergence speed, steady state performance, and compu-
tational load of the algorithm. A subsequent paper will
examine the impact of non-stationarity, source kurtosis, and
forgetting factor on ORICA performance. The described
pipeline is integrated in the BCILAB toolbox [9] with utility
for future applications in high-density source separation,
artifact rejection, and BCI [13].
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