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Abstract— This paper reports the classification of finger 

flexion and extension of surface Electromyography (EMG) and 

Cyberglove data using the modified Independent Component 

Analysis (ICA) weight matrix. The finger flexion and extension 

data are processed through Principal Component Analysis 

(PCA), and next separated using modified ICA for each 

individual with customized weight matrix. The extension and 

flexion features of sEMG and Cyberglove (extracted from 

modified ICA) were classified using Linear Discriminant 

Analysis (LDA) with near 90% classification accuracy. The 

applications of this study include Human Computer Interface 

(HCI), virtual reality and neural prosthetics.   

I. INTRODUCTION 

In recent years, there has been an increasing number of 
research conducted towards myoelectric control of individual 
fingers for prosthetic devices [1, 2]. Control of finger flexion 
and extension is of particular importance, especially to 
prosthetics. From initial investigations in using surface 
Electromyography (sEMG) for classifying individual finger 
flexions and extensions, researchers have acknowledged  the 
growing importance of controlling finger flexions and 
extensions [1, 3, 4] in prosthetics and rehabilitation 
applications. 

The finger extension and flexion are performed using 
both extrinsic and intrinsic muscles of the hand. The former 
one stretch over the forearm and latter one is responsible for 
all the actions of the hand. The pattern recognition process of 
simple and complex gestures can be broken down into three 
main phases: feature extraction, feature reduction, and 
classification. In the recent past, researchers have explored 
the classification of various finger and hand gesture 
movements using different feature extraction and 
classification techniques, which include support vector 
machines [5], linear discriminants  and  neural networks [3, 
4, 6].  

Matrix factorization techniques such as Independent 
Component Analysis (ICA), Principal Component Analysis 
(PCA) and Nonnegative Matrix factorization (NMF)  have 
been used for several pattern recognition and data mining 
applications [7-9]. ICA is a multivariate data analysis 
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technique having  most  promising results not only in general 
Blind Source Separation (BSS) problem but also in source 
separation and identification of sEMG [3, 5]. ICA converts a 
multidimensional vector into statistically independent 
components (ICs). For ICA algorithm, it is the requirement 
that the sources must linearly mixed and be highly 
independent. BSS techniques using ICA have been widely 
used in biomedical and sEMG signal processing applications 
[3, 9, 10]. One of the advantages of using ICA is that it 
decomposes these physiological signals into different ICs, 
which can be used for further processing.   

This paper presents a research study conducted on 
classification of sEMG and Cyberglove data for various 
finger extension and flexion movements using modified ICA 
weight matrix. The initial research study conducted on 10 
participants has shown promising results and efficacy of ICA 
in identifying various Cyberglove and sEMG gestures. 

The rest of the paper is organized as follows. The brief 
introduction of EMG and Cyberglove is introduced in 
section II. The ‘‘Methods’’ section describes the 
experimental design and feature extraction methods while the 
‘‘Results” section explains the results for the proposed 
scheme in detail and ‘‘Discussion and Conclusion’’ section 
discusses the future research related to sEMG and 
Cyberglove classification scheme. 

II. EMG AND CYBERGLOVE 

Surface EMG is the electrical recording of the muscle 
activity from the surface by the muscle cells when these cells 
are electrically or neurologically activated [3, 5, 11-13].  It is 
detected from superficial muscles by using surface 
electrodes, has rich motor control information and is closely 
related to the strength of muscle contraction. Surface EMG 
has been used in various applications which include 
myoelectric control, prosthetics, neuropathy and other 
related applications [1, 2, 13, 14].  

The Cyberglove is a more advanced glove that was 
developed specifically for the recognition of sign languages. 
It uses proprietary resistive bend sensing technology to 
accurately transform finger motions into real time diagonal 
joint angle data [15]. In a Cyberglove the 22 sensors are 
distributed as follows: three flexion sensors for each finger, 
four abduction sensors, a palm arch sensor, and two sensors 
for wrist (one for flexion and one for abduction) [15]. A 
typical Cyberglove sensor placement is shown in Fig. 1.  
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Fig. 1. Cyberglove with 22 sensor data [16] 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Cyberglove with sEMG sensors used for the experiment [16] 

 

III. METHODS 

A.  Data acquisition 

For this study, the required Cyberglove and sEMG data 
were obtained from NINAPRO database[16]. NINAPRO 
database consists of both kinematic (Cyberglove) and sEMG 
data from the upper limbs of 27 intact subjects while 
performing 52 finger, hand and wrist actions. For the 
purpose of this study, we used 10 flexion and extension 
movement from 10 subjects, which include, 1) Index finger 
flexion 2) Middle finger flexion 3) Ring finger flexion 4) 
Little finger flexion 5) Thumb flexion 6) Index finger 
extension 7) Middle finger extension 8) Ring finger 
extension 9) Little finger extension and 10) Thumb 
extension. One of the examples of the Cyberglove and sEMG 
sensor set up used for the experiment is shown in Fig. 2.  

As explained in [16], sEMG data was acquired using 
OttoBock MyoBock 13E200 surface EMG electrodes with 
an amplification factor of 14000. The raw sEMG signals 
were recorded with a sampling frequency of 500Hz and the 
bandwidth of sEMG was around 25Hz-500Hz.  

Similarly, 22 sensor Cyberglove data was recorded using 
sampling frequency of 50Hz. The experimental protocol for 
the whole process is explained as follows: During the data 
acquisition, the subjects sit comfortably on an adjustable 
chair, in front of a table with a large screen. The subjects are 
presented with short movies appearing on the screen and are 
asked to simply replicate the movements depicted in the 
movies as accurately as possible. Each subject first 
undergoes a “training phase” to get familiar with the 
procedure, during which each movement of the first three 
classes and three movements of the fourth class are repeated 
three times (no data are recorded). After the training phase, a 
sequential series of ten repetitions of each class of 
movements is presented to the subject while data are 
recorded [16]. 

B. Feature extraction using PCA and ICA 

Initially, 22 sensor data was processed through PCA. 
From the experimental analysis it was found that for 
Cyberglove data, 85% of the variances are found in the first 
6 Principal Components (PCs). On the other hand for sEMG 
data, 4 PCs were found to be having variances greater than 
85% (Refer to Fig. 3 and Fig. 4). For ICA analysis, 6 and 4 
PCs were selected ( 6 for Cyberglove and 4 for sEMG). The 
advantage of PCA is that pre-applying PCA enhances ICA 
performance by (1) discarding small trailing Eigen values 
before whitening and (2) reducing computational complexity 
by minimizing pair-wise dependencies. PCA decorrelates the 
input data; the remaining higher-order dependencies are 
separated by ICA [17]. 

For ICA, let x and s be PCs that contain the linear 

mixtures of (Cyberglove and sEMG) nxxx ,,, 21   

and nsss ,,, 21  , respectively, and let A be the matrix with 

entries
ijij Aa  . The above-mentioned mixing model can then 

be written as                                    

                                          x = As                                       (1)  

where x is an observed data vector, A is an unknown full 

rank mixing matrix, s, is an unknown non-Gaussian source 

process. The goal of ICA is finding the weight 

matrix, 1
 AW , so that the sources can be estimated from 

the vector x by optimizing a statistical independence 

criterion. 

                                     


s  = Wx =W(As)                           (2) 

where 


s  are the estimated sources up to permutation and 

scaling ambiguity. However in this process the quality of the 

separation would also depends on the recorded signals; x. i.e. 

the quality of separation might be poorer for very low quality 

of recordings. Hence, in this research study, we propose a 

novel method to reconstruct the weight matrix based on the 

threshold value. After several empirical analysis (spectrum 

and frequency), threshold value of 0.1 was found to be 
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Fig. 4. Principal Components plot for the sEMG data 
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Fig. 3. Principal Components plot for the Cyberglove data 
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Fig. 5. Finger flexion results (Mean±SD) for sEMG and  

Cyberglove data 
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Fig. 6. Finger extension results (Mean±SD) for sEMG and  
Cyberglove data 

 

suitable for further analysis. Hence, the rows in the weight 

matrix W that corresponded to independent component (ICs) 

with ICs ≤ 0.10 (10%) were set to zero. The new weight 

matrix that was obtained, denoted by 


W , is similar to the 

original weight matrix W (


W ≈ W), with the difference that 


W does not contain information relating to ICs that 

contribute no or little to the content of the original signals x. 

This weight matrix (


W ) was kept constant for each 

individual and the new sources (
~

s ) were estimated as: 

~

s  = 


W x                            (3) 

For this study, we based our work on a simple feature 
extraction strategy and calculated the Root Mean Square 
(RMS) features using the windowed sEMG and Cyberglove 
data. For the sEMG data, we empirically used 256 samples 
as the window size with 25% overlapping, whereas for the 
Cyberglove data, 128 samples were chosen as the window 
size, shifted 25 samples each time. The feature extraction 
and classification were implemented using Matlab software 
under the Windows platform.  

C. Classification of features using LDA 

The RMS feature set was computed for windowed sEMG 
and Cyberglove ICA data. These feature sets were provided 
to train a subject specific Linear Discriminant Analysis 
(LDA). The advantage of this classifier is that it does not 
require iterative training, avoiding the potential for under  or 
over-training [18]. The main objective of LDA is to 
minimize the distances among the vectors belonging to the 
same class and to maximize the distances among the class 
centres. For the Cyberglove and sEMG gesture recognition 
task, the LDA classifier is implemented by calculating linear 
discriminant functions and selecting the maximum one as the 
classification rule.  

In the classifier evaluation sessions, pattern classification 
of sEMG and Cyberglove was performed on data analysis 
windows. In each classifier evaluation session, a subject 
specific LDA classifier constructed on the preceding training 
session was applied to determine the motion of the 
individuals. In order to evaluate the performance of the 
proposed myoelectric and Cyberglove classification scheme, 
confusion matrices were calculated.  
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IV. RESULTS  

The classification results of finger flexion and extension 
features for both the sEMG and Cyberglove features are 
given in Table I. The average classification results (Mean 
and Standard Deviation (SD)) plots for the finger flexion and 
extension sequences are shown in Fig. 5 and Fig. 6 
respectively. 

TABLE I.  FLEXION AND EXTENSION CLASSIFICATION            

(AVERAGE) RESULTS 

Gestures 
Classification Accuracy % (Mean±SD) 

Cyberglove sEMG 

Little finger flexion 89.4±1.2 93.2±2.1 

Middle finger flexion 88.5±2.1 93.8±1.3 

Index finger flexion 88.4±1.6 93.1±2.3 

Ring finger flexion 89.4±1.3 93.2±2.2 

Thumb flexion 88.2±2.2 93.1±2.4 

Little finger extension 87.9±2.7 94.3±2.1 

Middle finger extension 88.2±2.0 94.1±1.1 

Index finger extension 88.1±1.9 94.2±1.3 

Ring finger extension 88.5±1.1 94.3±1.4 

Thumb extension 87.9±2.1 94.1±1.3 

V. DISCUSSION AND CONCLUSION 

In this research study a simplistic pattern recognition 

system for finger extension and flexion using sEMG and 

Cyberglove is presented. The system uses PCA for 

dimensional reduction followed by modified ICA weight 

matrix designed for the individual. The ICA separated RMS 

features were classified using simple LDA system. The 

system shows promising results for both sEMG and 

Cyberglove.  

The proposed classification scheme is tested only for 10 

subjects. In order to test the robustness of the proposed 

method, the system needs to be tested for more number of 

hand finger movements using numerous subjects. Also, 

several key areas need to be further investigated to 

demonstrate the robustness of the system. The sEMG signals 

used in the present classification effort were recorded about 

2 hour period. It is unknown whether the classifier will 

remain stable in response to the changing muscle conditions 

that may happen over the course of time. Moreover, it will be 

challenging task to device a similar classification scheme for 

transradial amputees and stroke survivors.   

In future authors would like to combine both sEMG and 

Cyberglove data to produce better gesture recognition system 

for complex hand and finger movements. Moreover, it is 

interesting to explore the feasibility of the proposed 

approach to motion dependent and user dependent 

gestures/actions.  
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