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Abstract— Sepsis is a systemic deleterious host response
to infection. It is a major healthcare problem that affects
millions of patients every year in the intensive care units
(ICUs) worldwide. Despite the fact that ICU patients are heavily
instrumented with physiological sensors, early sepsis detection
remains challenging, perhaps because clinicians identify sepsis
by using static scores derived from bed-side measurements
individually, i.e., without systematically accounting for potential
interactions between these signals and their dynamics.

In this study, we apply network-based data analysis to take
into account interactions between bed-side physiological time
series (PTS) data collected in ICU patients, and we investigate
features to distinguish between sepsis and non-sepsis conditions.
We treated each PTS source as a node on a graph and we
retrieved the graph connectivity matrix over time by tracking
the correlation between each pair of sources’ signals over
consecutive time windows. Then, for each connectivity matrix,
we computed the eigenvalue decomposition. We found that,
even though raw PTS measurements may have indistinguishable
distributions in non-sepsis and early sepsis states, the median µ̂

of the eigenvalues computed from the same data is statistically
different (p < 0.001) in the two states and the evolution of µ̂

may reflect the disease progression. Although preliminary, these
findings suggest that network-based features computed from
continuous PTS data may be useful for early sepsis detection.

I. INTRODUCTION

Sepsis is clinically defined by the presence of both an
infection and a resultant maladaptive inflammatory response
[1], [2]. It is a progressively injurious process that typically
leads to acute organ dysfunction and tissue hypoperfusion
(“severe sepsis”), and eventually to hypotension conditions
that are refractory to proper fluid resuscitation (“sepsis
shock”) [1], [2]. Sepsis affects over 18 million people every
year worldwide and results in 1400 deaths every day [3]. In
the sole U.S., severe sepsis and sepsis shock affect almost
a million people every year and remain the most common
cause of death in intensive care units (ICUs), with a mortality
rate ranging between 28% and 50% [3], [4].

Sepsis is typically initiated by specific bacterial products
(e.g., lipotechoic acids, lipopolysaccharide, or oligosaccha-
rides) introduced in the patient’s circulation, which trigger
an inflammatory cascade that eventually manifests with
stereotypical clinical symptoms (e.g., abnormal temperature,
heart rate, and respiration rate, drop in fluid output) [5],
[6]. Clinical criteria have been proposed to identify sepsis,

S. V. Sarma was supported by the Burroughs Wellcome Fund CASI Award
1007274. S. Santaniello was supported by the NSF Grant ECCS-1346888

1Institute for Computational Medicine, Johns Hopkins University, Balti-
more, MD 21218, USA

2Department of Biomedical Engineering, Johns Hopkins University,
Baltimore, MD 21218, USA
{ssantan5,sgranite,ssarma2,rwinslow}@jhu.edu

severe sepsis, and septic shock but, despite the effort, sepsis
remains difficult to diagnose and even the more severe
forms are often misdiagnosed [1], [2]. This difficulty likely
stems from (i) an inability to recognize when a patient
is transitioning from a non-septic state to a septic state,
which may occur well before that the clinical symptoms
become apparent, and (ii) the challenge of distinguishing
sepsis from a systemic inflammatory response syndrome
secondary to a non-infectious etiology [7]. Perhaps more
importantly, the diagnosis of sepsis currently depends on 30
physiologic and laboratory variables (e.g., blood pressure,
heart rate, temperature, oxygenation, pH, and fluid balance)
that clinicians manually integrate into a single cumulative
risk score (e.g., APACHE II, MODS, SOFA, MEWS, or
REMS), which usually modulates after that the clinical
symptoms have become apparent [8]–[10]. As a result, many
patients with sepsis are either never diagnosed or have a late
diagnosis which delays life-saving therapies.

Time, in fact, is essential to the efficacy of anti-septic treat-
ments. The chance of surviving for patients with septic shock
decreases by 7.6% for each hour that effective antimicrobials
are delayed [11], while an early goal-directed therapy (i.e.,
a combination of early diagnosis, timely initiation of an-
tibiotics, and resuscitation to hemodynamic goals [12]) may
significantly improve the clinical outcomes of the patients
and reduce the mortality rate by over 45% [11], [13]–[17].

We hypothesize that the transition from the non-septic
state to the septic state is “hidden” within the physiological
time series (PTS) data that are continuously collected from
ICU patients through bedside instrumentation. Furthermore,
we hypothesize that interactions between simultaneously
acquired PTS measurements may reveal early stages of the
septic condition.

Studies [18]–[20] have shown that a combination of non-
linear features computed out of different PTS sources and
multivariate logistic regression can separate sepsis and non-
sepsis states. However, because each source is processed
independently from the others, large sets of training data
are required to achieve sufficient classification accuracy.
In this paper, instead, we investigate the effectiveness of
network-based features from PTS measurements to distin-
guish between sepsis and non-sepsis conditions. We tested
our approach by using data from two patients in the MIMIC
II (Multiparameter Intelligent Monitoring in Intensive Care
II) database [21], [22]. First, we envisioned the patient as a
networked dynamic system, wherein sepsis not only affects
the functionality of individual components (e.g., cardiovas-
cular system or respiratory system), but also dysregulates
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the interactions between these components [5], [6]. The dys-
regulation is one of the mechanisms that initiates sepsis and
affects the dynamics of multiple PTS features simultaneously
(e.g. heart rate, blood pressure, and respiratory rate). Second,
by following the approach in [23]–[27], we computed graph
theory-based statistics to model a patient’s PTS dynamics.
Each type of PTS source was considered a node on a graph,
and edges between nodes were weighted by how correlated
the signals were in a given window of time. The connectivity
matrix of the graph and its set of eigenvalues were then
tracked over time by sliding the window and the median
value µ̂ of the eigenvalues in each window was estimated
and used to characterize the sepsis and non-sepsis state.

Preliminary results indicate that, even though the distri-
butions of raw PTS measurements in non-sepsis and sepsis
states were indistinguishable when viewed individually, the
distributions of µ̂ computed from the same data clearly
distinguishes these two states. This suggests that network-
based features extracted from PTS data may be useful for
real-time detection of transitions into sepsis states.

II. METHODS

A. Patients from the MIMIC II Database

We tested our approach on two patients (ID: s10653
and s11342) from the MIMIC-II database [21], [22]. Sub-
jects s10653 (female, 87y) and s11342 (female, 44y) were
monitored in ICU several weeks before developing sepsis
and then after the sepsis diagnosis. The clinical pattern of
these patients was characterized by a first stay in ICU due
to severe cardio-pulmonary deficits along with hepatic or
kidney failure (up to two days), a following amelioration of
the clinical conditions and release from the ICU, and then a
later return to ICU because of a deterioration of the general
conditions and diagnosed sepsis. For each patient, we used
continuous PTS measurements collected after the diagnosis
(s10653: 15.2 h; s11342: 59.4 h) and in the latest pre-sepsis
stay of the subjects in ICU (s10653: 38.2 h collected 6 weeks
before the diagnosis of sepsis; s11342: 14.3 h collected 8
weeks before the diagnosis of sepsis).

B. PTS measurements

Each PTS signal was acquired with a different sampling
rate and equipment and then low-pass filtered (anti-aliasing)
down-sampled to 1 Hz, and stored in the MIMIC II database.
For each condition, we used seven signals: HR (heart rate
computed from the ECG signal), RR (respiration rate),
SpO2 (saturation of peripheral oxygen), PP (heart rate
estimated from a peripheral pulsatile signal), Pd, Ps, and
Pm (diastolic, systolic, and mean arterial blood pressure,
respectively), where the blood pressures were measured non-
invasively and averaged over consecutive, non-overlapping,
1 min-long windows. See [21], [22] for further details
about the dataset. Each PTS signal was high-pass filtered
(4th order Butterworth filter, cutoff frequency: 0.04 Hz) to
remove the DC component and normalized by removing the
mean and dividing by S.D. Missing samples (e.g., Fig. 1a-
d) were reconstructed via linear interpolation. Note that

other normalization methods (e.g., division by S.D. of the
physiologic range of the PTS signals for healthy subjects)
may produce different results. The dynamics of the resultant
normalized signals, however, will remain unaffected.

C. Network Data Analysis

For each patient, we considered the vector-valued series

η(t) , [HR RR SpO2 PP Pm Ps Pd]
T (1)

given by estimating the high-pass filtered, normalized PTS
signals once every second t (i.e., sampling rate: 1 Hz). Each
signal was divided into consecutive, overlapping windows
(window length: 30 s; overlap: 25 s) and, for each window
k = 1, 2, . . ., a connectivity matrix A(k) was constructed
based on the zero-lag cross-correlation coefficients

Aij(k) ,
1

M

M∑

m=0

ηi((k− 1)∆+m)ηj((k− 1)∆+m) (2)

where ηi and ηj are the component i and j of the vector (1),
respectively, M is the number of samples in the window (i.e.,
M=30), and ∆=5 s is the lag between consecutive windows.
The choice of the window size in this particular example
was due to the limited duration of the dataset. Note that the
correlation coefficient Aij(k) varies between +1 (i.e., perfect
correlation) and -1 (i.e., perfect anticorrelation), and it is 0
when the two components are completely uncorrelated [29].

For each patient, we computed the importance (a.k.a.,
“centrality” [28]) of each PTS component in (1) over time
by performing the eigenvalue decomposition of the matrices
Ak, k = 1, 2, . . . [29], and tracking the leading eigenvector
(a.k.a. “eigenvector centrality” [EVC] [28]) and the vector
of eigenvalues, Λk , [λ1 . . . λ7]

T , k = 1, 2, . . ..
Because the trace of A(k) is constant over k and equal to

the sum of the eigenvalues in Λk [29], we hypothesize that (i)
as the network connectivity changes because of the transition
into the sepsis condition, a broad-band re-distribution of the
values in the components of Λk occurs and (ii) the emergence
of significant interactions between different PTS signals can
be reflected by the median value µ̂k of the eigenvalues in Λk.
Hence, we tracked µ̂k over time and we use it to character-
ize the non-sepsis and sepsis state. The median is chosen
because, as the correlation between the PTS measurements
increases (i.e., the nodes in the graph become all strongly
connected), the eigenvalues of the associated connectivity
matrix show a large spread, with the largest eigenvalue
being significantly larger than the remaining eigenvalues
[29]. Conversely, as the PTS measurements become strongly
uncorrelated, the off-diagonal elements of the connectivity
matrix approach all 0 and, correspondingly, the eigenvalues
are all comparable in magnitude [29].

III. RESULTS

For each patient, matrices A(k), k = 1, 2, . . . were 7× 7,
and the correspondent EVC vector and median value µ̂k of
the eigenvalues were computed and tracked over time.

Fig. 1a-d reports the temporal evolution of the raw PTS
measurements for both patients in non-sepsis (Fig. 1a,b)
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Fig. 1. a-d) PTS measurements for s10653 recorded 6 weeks before
developing sepsis (a) and after the diagnosis (c) and for s11342 recorded 8
weeks before developing sepsis (b) and after the diagnosis (d). Time scale
in c-d) also applies to a-b), respectively. e-f ) First and second principal
component (PC) of the vector of raw PTS measurements for s10653 (e)
and s11342 (f ) in non-sepsis and sepsis conditions (black and red points,
respectively).

and sepsis (Fig. 1c,d) conditions. The PTS measurements
did not show significant features in sepsis vs. non-sepsis
conditions (Wilcoxon test, p > 0.05) as indicated by the
principal component analysis [30] of the vector-valued time
series η(t) defined in (1). In both patients, the first two
principal components accounted for over 70% of the variance
in the data under non-sepsis conditions (s10653: 70.4%;
s11342: 73.7%) and over 80% of the variance (s10653:
81.7%; s11342: 80.4%) under sepsis conditions, with no
clear separation between the two states (Fig. 1e,f ).

The correlation among the PST measurements, instead,
had a different pattern in the two states and was captured by
the EVC vector and the distribution of the eigenvalues. First,
we performed a principal component analysis of the EVCs
estimated over consecutive time windows and we noted that,
even though the fraction of variance in the data accounted by
the first two principal components was lower than for the raw
PTS measurements (sepsis vs. non-sepsis: 68.1% vs. 52.9%
in s10653; 67.6% vs. 58.2% in s11342), the increment of
variance accounted for at the transition from the non-sepsis
to the sepsis state was larger in both patients, thus suggesting
that the sepsis state caused a larger rotation in the EVC space
than in the raw PTS vector space. Furthermore, the first
two principal components of the EVCs had a significantly
different distribution (Wilcoxon test, p < 0.05) in sepsis and
non-sepsis conditions (Fig. 2a,b), which indicates a structural
change in the correlation between the different PTS sources.

The rotation of the EVC space under sepsis conditions
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Fig. 2. a-b) First and second principal component (PC) of the EVC vector
for s10653 (a) and s11342 (b) in non-sepsis (black points) and sepsis (red
points) state. c-d) Probability distribution of µ̂k in non-sepsis (black line)
and sepsis (red line) state in s10653 (c) and s11342 (d). e-f ) Power spectrum
density (PSD) of µ̂k in non-sepsis (black line) and sepsis (red line) state in
s10653 (e) and s11342 (f ). The PSD was computed with the Welch method
(i.e., signals divided into 256 samples-long windows, 10 samples shift, each
data window multiplied by a Hanning window and FFT transformed).

was also associated with a change in the distribution of the
eigenvalues. In particular, while the largest eigenvalue was
similar in sepsis and non-sepsis conditions, the distribution
of the eigenvalues was more skewed in sepsis conditions and
this impacted the median value, which was lower on average
under sepsis conditions. This is reflected in the overall sam-
ple probability distribution of the µ̂k time series (Fig. 2c,d):
because of the increased skewness of the eigenvalue distri-
bution, the most likely value was µ̂k = 0 under sepsis condi-
tions and the overall likelihood of a median value lower than
0.1 significantly increased at the transition from non-sepsis to
sepsis conditions (Wilcoxon test, p < 0.001), thus indicating
that the generalized inflammatory state was affecting multiple
systems and determining an overall correlation among the
different PTS sources increased. Furthermore, the temporal
evolution of µ̂k had a different pattern in non-sepsis and
sepsis conditions, with the emergence of a slow oscillation
(between 0.05 Hz and 0.07 Hz, Fig. 2e,f ) in the latter
case. This oscillation may reflect a pathological coupling
between the HR, RR, and PP signals in (1), perhaps due
to a baroreflex dysfunction related to hypertension (both
patients were diagnosed hypertension and respiratory failure)
and/or a dysregulation of the combined sympathetic and
parasympathetic modulation [31], [32].

IV. CONCLUSIONS AND FUTURE WORK

Sepsis is one of the primary causes of death in the
ICUs worldwide. Early detection of sepsis conditions is of
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paramount importance to successfully treat septic patients
but, despite numerous efforts, it remains challenging and
ultimately hampered by the fact that diagnosis follows the
appearance of stereotypical clinical symptoms, which may
occur only at a late stage of the disease. In this paper, we
explored a network-based approach to analyze bed-side PTS
measurements collected in ICU patients and we showed that
multivariate features extracted from these measurements may
allow to distinguish between non-sepsis and sepsis state,
independently of the assessment of clinical symptoms.

We plan (i) to further assess the robustness of our results
on a larger set of ICU patients, (ii) to eventually explore addi-
tional measures that may determine the connectivity between
the PTS sources and separate non-sepsis and sepsis state
more effectively (e.g., band-limited cross-power, coherence,
mutual information, average clustering coefficient, small-
world parameter, etc.) , and (iii) ultimately to develop an
optimal unsupervised policy for early sepsis detection based
on the paradigm in [24], [25].
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