Respiratory rate estimation from the oscillometric waveform obtained
from a non-invasive cuff-based blood pressure device
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Abstract— The presence of respiratory activity in the elec-
trocardiogram (ECG), the pulse oximeter’s photoplethysmo-
graphic and continuous arterial blood pressure signals is a
well-documented phenomenon. In this paper, we demonstrate
that such information is also present in the oscillometric signal
acquired from automatic non-invasive blood pressure monitors,
and may be used to estimate the vital sign respiratory rate (RR).
We propose a novel method that combines the information
from the two respiratory-induced variations (frequency and
amplitude) via frequency analysis to both estimate RR and
eliminate estimations considered to be unreliable because of
poor signal quality. The method was evaluated using data
acquired from 40 subjects containing ECG, respiration and
blood pressure waveforms, the latter acquired using an in-house
built blood pressure device that is able to connect to a mobile
phone. Results demonstrated a good RR estimation accuracy of
our method when compared to the reference values extracted
from the reference respiration waveforms (mean absolute error
of 2.69 breaths/min), which is comparable to existing methods in
the literature that extract RR from other physiological signals.
The proposed method has been implemented in Java on the
Android device for use in an mHealth platform.

I. INTRODUCTION

Extreme values of respiratory rate (RR) have been shown
to be associated with an increased risk of adverse events in
hospital patients [1], [2]. This has led to its inclusion in most
numerical patient assessment systems, the use of which is
widespread [3]. Hospital clinical staff are recommended and
trained to measure RR from patients by counting the number
of breaths in a 15 or 30-second window. Besides being prone
to user-dependent subjective errors, this approach is time-
consuming and adds to the heavy burden of data collection
in busy clinical environments.

Automated techniques for measuring RR allow for almost
continuous monitoring, which can improve temporal resolu-
tion, increase accuracy and save clinical time. Nevertheless,
these techniques usually require the use of equipment which
might interfere with natural breathing, such as spirometry, or
might be uncomfortable for the patient, such as measurement
via a band that encircles the chest and/or abdomen. The
impedance plethysmography (IP) signals acquired with the
latter are often unusable as a result of poor signal-to-noise
ratio and presence of movement artifacts [4]. The electrocar-
diogram (ECG), photoplethysmogram, or continuous arterial
blood pressure signals, have been considered as a source

1MAFP, MDS, CA, JD, MAM and GDC are with the Centre for
Affordable Healthcare Technology, Kellogg College, Banbury Road, Oxford
OX2 6PN, UK.

2GDC is with the Georgia Institute of Technology and Emory University,
GA, USA.

Correspondence: marco.pimentel at eng.ox.ac.uk

978-1-4244-7929-0/14/$26.00 ©2014 European Union

for extraction of respiratory information [5], [9], [10], [12].
Respiratory information may be modulated in these signals in
two fundamental ways: amplitude modulation (AM), which
is caused by changes in intrathoracic pressure during in-
spiration and expiration, and frequency modulation (FM),
which corresponds to a variation in heart rate that occurs
throughout the respiratory cycle (also known as respiratory
sinus arrhythmia) [5].

The extraction of the respiration signal from the oscillo-
metric waveform has been considered to suppress its effect in
estimating the blood pressure [6]. In this paper, we show that
we can extract the respiration signal from the oscillometric
signal acquired from our (in-house developed) upper-arm
non-invasive blood pressure device [7] and we propose a
novel method to determine RR by combining the different
variations of the oscillometric signal caused by respiration.
Such an approach brings several advantages for in- or out-
hospital assessment of RR: (1) it provides more useful clini-
cal information from traditional non-invasive blood pressure
monitors; (2) it is user-independent; (3) no extra equipment
is required; (4) it reduces the duration of a patients clinical
assessment; and (5) it reduces costs for care institutions.

II. METHODOLOGY
A. Data Collection

For the analysis described in this paper, we acquired data
from a group of 40 healthy subjects (median age 26, range
21-44 years old; 14 females) who underwent 6 consecutive
left-arm blood pressure measurements: 3 measurements at
rest, followed by 3 measurements while squeezing a ball with
the right hand. In both sessions, one of the measurements
was taken using our non-invasive blood pressure device, from
which we extracted the pressure signal (sampled at a rate of
150 Hz). Both measurements were preceded and followed
by a blood pressure measurement using a commercially
available blood pressure device (the clinically-validated Au-
tomatic Blood Pressure Monitor, M2 Basic model, from
Omron, UK). Continuous single-lead ECG (256 Hz) and
respiration IP (using two bands that encircle the chest and
abdomen, 256 Hz) signals were also collected during each
measurement (using the Visi-3 Digital Sleep System from
Stowood Scientific Instruments Ltd., UK). The subjects were
asked to sit upright and to perform normal breathing at their
own natural pace during all measurements.

B. Data Preparation

A total of seventy-eight pressure signals containing reli-
able recordings of blood pressure measurements from the 40
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Fig. 1. Representation of the pressure signal and oscillometric waveform
(thicker line) derived from the pressure signal acquired with our blood
pressure monitor from one subject.

subjects were selected for the analysis (2 recordings were
deemed to be of bad quality due to missing data). ECG,
respiration and blood pressure recordings were manually
synchronized by two independent research assistants, who
labelled the beginning and end of all continuous recordings
according to the duration of the correspondent pressure sig-
nal. The two respiration IP signals were used as the reference
gold standard recordings for RR validation. The ECG signal
was used as the reference gold standard recording for the
heart rate validation, and as a second reference recording for
the RR validation. The blood pressure measurements that
preceded and followed each measurement performed with
our device were used as the reference gold standard for the
blood pressure validation.

All the data processing and statistical analysis was per-
formed using the MATLAB software framework (Math-
works, Natick, MA, USA).

C. Respiratory rate extraction from the oscillometric wave-
form

Systolic and diastolic blood pressure values were esti-
mated from the pressure and oscillometric waveforms (Fig-
ure 1) using the oscillometric method, which is the most
widely used method in commercial blood pressure monitors
[8]. The method has been described in previous work [7] and
has shown to be an efficient and accurate way to estimate
blood pressure. The heart rate was calculated from the
frequency spectrum generated via the fast Fourier transform
(FFT) of the oscillation waveform. The frequency component
with the highest magnitude corresponds to the heart rate [7].

In our proposed method to extract RR, we explored
the combination of different features (that have different
frequency modulations) from the oscillometric waveform
(Figure 2-(c)) as subsequently described. First, beat detection
was performed using a signal segmentation algorithm that
marks the peaks of each beat. For that, the mean value
was removed from the signal, and the resultant signal was
differentiated using a five-point digital differentiator. The
signal energy of the differentiated signal was then determined
and finally a threshold-based detection algorithm (using
T = 0.005) was applied to detect the most significant local
maxima of the signal.
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Fig. 2.  Extraction of respiratory rate from the oscillometric signal. (a)

Reference impedance plethysmography respiration signal (acquired from
the abdomen); (b) ECG signal; (c) oscillometric waveform acquired with
our blood pressure monitor; (d) frequency and (e) amplitude modulated
waveforms derived from the oscillometric signal. The derived modulation
signals, which are highly correlated with the reference respiration signal,
are used to calculate the respiratory rate.

The intervals between successive peaks were calculated to
derive the interbeat time series, which corresponds to the FM
waveform (Figure 2-(d)). Fourier analysis requires evenly
sampled data, and therefore, the time series was resampled
onto an even 4 Hz grid using linear interpolation. The
waveform was then filtered using a finite impulse response
(FIR) band-pass filter with cut-off frequencies of 0.1 and
0.7 Hz (equivalent to respiratory rates of 6-42 breaths/min),
and converted to the frequency domain using FFT. The
resulting power spectrum of the signal was then analyzed
for the frequency with maximum power within the expected
respiratory frequency range (4-60 breaths/min).

The amplitude (maximum intensity) of the resulting series
of peaks was also determined in order to derive the AM
waveform (Figure 2-(e)). The baseline wander (which was
determined using a 6! —order polynomial fit) was removed
from the series and data were resampled at 4 Hz using linear
interpolation. Equivalent to the FM method, the resulting
signal was filtered using a FIR band-pass filter with cut-off
frequencies of 0.1 and 0.7 Hz, and the FFT power spectrum
of the signal was then analyzed for the maximum frequency
content within the RR frequency range.

The AM and FM estimations were fused by either taking
the estimation with higher intensity in the correspondent
frequency spectrum, or calculating the mean of the AM and
FM-based estimations if the difference between them was
less than 3 breaths/min. Those measurements in which the
difference between the AM and FM estimations was higher
than 5 breaths/min were classified as low-quality estimations.
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Fig. 3. (a) Scatter plot comparing the reference respiratory rate (RR)
obtained from the respiration signals with the RR estimates obtained from
the oscillometric signal acquired with the blood pressure monitor and “Best
Fit” line (R2 = 0.9201); (b) Absolute error for the range of reference
RR values covered in the study. The proposed method, by combining the
different modulations of respiration in the oscillometric signal, is able to
eliminate some of the estimations with larger error.

D. Reference respiratory rate

In order to obtain a valid estimate of the reference RR
during the blood pressure measurement, we calculated it
from the two IP signals acquired using two frequency-
based methods (Figure 2-(a)). Each respiration signal was
downsampled to 4 Hz, after applying an anti-aliasing filter,
and then filtered using a 0.1-0.7 Hz FIR band-pass filter. For
the first frequency-based estimation method, we analyzed the
FFT power spectrum of each waveform and identified the
frequency with the largest power associated with it within
the respiratory frequency range. For the second method, we
fitted the filtered waveforms to a 7! —order autoregressive
(AR) model and identified the respiratory pole as the pole
with the highest magnitude within the respiratory frequency
range. The frequency associated with that pole was selected
as the one containing respiratory information [9]. Only those
reference respiratory rates for which the agreement between
both FFT and AR-based estimates from both IP signals was
within 2 breaths/min were retained [9]. According to this
analysis, all signals were deemed to be “valid”, and the mean
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Fig. 4. Results from the sensitivity analysis comparing the performance
of ECG-based with oscillometric-based methods to extract respiratory rate
(RR) during different conditions. The boxplot shows the absolute error
between the reference RR and the RR estimated during a rest protocol
(Rest), after an active exercise protocol (Activity) and averaged accross
both protocols (All). Lower quartile, median and upper quartile values
are displayed as lower, middle, and upper horizontal lines of the boxes.
Whiskers are used to represent the most extreme values within 1.5 times
the interquartile range from the quartile. Outliers are displayed as dots. The
circle markers correspond to the mean values for each group. No statistically
significant difference (p = 0.129) between the RR derived by the ECG and
the oscillometric method for each protocol was observed.

of the estimates was taken as the final gold standard reference
respiratory rate value.

To assess further the performance of our proposed method,
we compared its performance with that of extracting RR from
the ECG recordings, for which several studies and methods
have been proposed in the literature. We extracted respiratory
information from the ECG recordings (see Figure 2-(b))
using the fusion method described in [9], which uses an AR
model for both AM and FM waveforms extracted from the
ECG signal.

E. Method Evaluation

The performance of the proposed algorithm was assessed
using the mean absolute error (MAE) in the correspondent
units, MAE = 15" | 4 — yyepi |, where n is the
number of recordings considered, and ¥; and y,.r; are the
estimated and reference values for recording ¢, respectively.
We determined the estimation error not only considering all
measurements together, but also considering the measure-
ments performed in each session (i.e., during rest and during
activity).

III. RESULTS AND DISCUSSION

Table I shows the overall MAE for the different vital
signs extracted from our blood pressure device compared
to the gold standard reference values. We observe that a
good agreement between the estimated values for the blood
pressure and heart rate was found, with a mean absolute
error of less than 5 mmHg and 3 beats/min, respectively,
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TABLE I
MEAN ABSOLUTE ERROR FOR EACH VITAL SIGN ESTIMATED USING THE
BLOOD PRESSURE MONITOR. THE REFERENCE ESTIMATED POPULATION
MEAN AND INTERQUARTILE RANGE VALUES ARE ALSO SHOWN.

Mean (IQR)
Reference Estimate MAE
Systolic BP (mmHg) 123.4 (13.8) 124.5 (16.0) 3.57

Diastolic BP (mmHg) 73.3 (16.0) 73.0 (13.0) 2.45
Heart Rate (beats/min) 75.2 (15.8) 75.1 (18.2) 0.75
Resp. Rate (breaths/min) 16.3 (6.5) 16.1 (6.1) 2.69

which is within the accuracy levels required for the clinical
validation of the device [13]. Crucially, we note that the
MAE obtained for RR was 2.7 breaths/min, which is within
the error found in previous studies of RR extraction from
other physiological signals acquired non-invasively, such as
ECG [9] and photoplethysmogram [10]). The RR MAE
may be reduced if the “low-quality” measurements are not
considered (see Figure 3). The combination of both AM and
FM estimations was able to eliminate some of the largest
estimation errors (8 measurements were eliminated), and
consequently, improve the performance of the method (from
3.10 to 2.69 breaths/min). We note that the reference value
is likely to contain estimation errors up to 2 breaths/min.
Figure 4 shows that the ECG-based method produced RR
estimates with an overall lower error than those extracted
from the oscillometric waveform. As noted by [6], this can be
expected, since the oscillometric blood pressure recordings
contain other low-frequency components that are very close
to breathing. Because the ECG signal does not contain these
perturbations so markedly, it provides a better reference
signal for extracting respiratory rate. However, for the resting
protocol, which is the clinically recommended approach,
the oscillometric approach exhibits lower errors. Also, the
differences between the estimation errors of the ECG record-
ings and those of the blood pressure recordings were not
statiscally significant (p = 0.129, using a Wilcoxon-Mann-
Whitney test). Furthermore, during the session in which the
blood pressure measurement was performed at rest, which is
the condition in which it should be performed, both methods
perform similarly. This demonstrates that the oscillometric
waveform contains reliable information of respiratory activ-

1ty.
IV. CONCLUSIONS

In this paper, we proposed and evaluated a novel algorithm
for extraction of respiratory rate from the oscillometric
signal captured by a non-invasive cuff-based blood pressure
device. A prototype protocol was developed for assessing the
performance of the method and for simultaneous recordings
of blood pressure and respiratory signals. Results exhibited a
good agreement between RR estimates from the blood pres-
sure monitor and the reference respiration signals. This work
has demonstrated that it is possible to extract breathing in-
formation from oscillometric recordings, which significantly
enhances the capabilities of automatic non-invasive blood
pressure devices by providing the possibility of incorporating

important physiological parameters such as respiratory rate
or respiratory sinus arrhythmia without significant added cost
or complexity. Such a device will be able to provide the users
with a better state of their health, as the respiratory rate is
an important vital sign that is known to be correlated to
other physiological conditions such as stress and obesity, and
reduce the cost and time to assess the physiological status.
Future work includes the extraction of more physiological
and clinically relevant features from the oscillometric signal,
such as the arterial stiffness [11], which can be used to
further enhance non-invasive blood pressure devices.
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