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Abstract— Deep Brain Stimulation (DBS) has been a success-
ful technique for alleviating Parkinson’s disease (PD) symptoms
especially for whom drug therapy is no longer efficient. Ex-
isting DBS therapy is open-loop, providing a time invariant
stimulation pulse train that is not customized to the patient’s
current behavioral task. By customizing this pulse train to
the patient’s current task the side effects may be suppressed.
This paper introduces a method for single trial recognition of
the patient’s current task using the local field potential (LFP)
signals. This method utilizes wavelet coefficients as features and
support vector machine (SVM) as the classifier for recognition
of a selection of behaviors: speech, motor, and random. The
proposed method is 82.4% accurate for the binary classification
and 73.2% for classifying three tasks. These algorithms will be
applied in a closed loop feedback control system to optimize
DBS parameters to the patient’s real time behavioral goals.

Index Terms— Deep Brain Stimulation, Parkinson’s Disease,
Support Vector Machine, Wavelet Transform

I. Introduction

Parkinson’s Disease (PD) is a movement disorder char-
acterized by tremor, rigidity and bradykinesia (slow move-
ments) and is caused by the premature death of dopaminergic
neurons in the brain. PD increases with advancing age and
raises among people in their 60s and 70s. There is no cure
for PD and instead therapy is directed at treating the motor
manifestations of PD such as tremor and rigidity.

The basal ganglia is a collection of deep brain nuclei that
are involved in parallel processing loops involving the cere-
bral cortex, thalamus, and spinal cord for motor, associative,
and limbic functions. The motor processing loop is also
called the “extrapyramidal motor system”, and modulates
motor control of basic movements such as posture, reaching,
walking, speech, and others. In neurological disorders such
as PD, there is disrupted regulation of basal ganglia nuclei
such that nuclei are either overactive or underactive.
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Deep Brain Stimulation (DBS) is an advanced FDA-
approved therapeutic technique for alleviating the PD symp-
toms especially for whom drug therapy is no longer efficient.
DBS of the subthalamic nucleus (STN-DBS) improves motor
signs of PD and permits reduction of dopaminergic medica-
tion. DBS provides relief of PD’s motor signs, but may have
cognitive, speech, and balance side effects. Existing DBS
therapy is open-loop, providing a time invariant stimulation
pulse train that is not customized to a patient’s current behav-
ioral task goals. By customizing DBS therapy to a patient’s
task using signal processing methods, these side effects of
stimulation may arise only when they are non-detrimental to
the patient’s current goals. This could therefore allow more
aggressive DBS parameters and closed loop control to reduce
the risk for therapy limiting side effects.

The electrical potential recorded from the implanted DBS
electrodes may provide substantial information related to a
subject’s behavioral goals, and therefore is a candidate signal
for an adaptive or closed loop DBS system. Further, electrical
potentials recorded from the cerebral cortex have success-
fully been used in brain-computer interface tasks. This paper
aims at exploring the subcortical electrical potentials in the
human brain, obtained during surgical implantation of a DBS
system and classification of three different tasks (speech,
motor and random) as a part of designing a closed loop DBS
system.

LFP recordings, which represent coherent activity of small
cell assemblies, have been used in humans to characterize
activity within cortical regions and subcortical nuclei [1].
Time-frequency analysis of motor cortex ECoG [2] and
subthalamic nucleus (STN) LFPs [3], has revealed character-
istic suppression of beta (13-30Hz) band and augmentation
of gamma (30-70Hz) band power preceding and during
motor behaviors. Thus, the human subthalamic nucleus in
PD exhibits oscillatory behavior in a broad frequency band
is modulated by motor activity.

A system for recognition of patient‘s activities by an-
alyzing the LFP brain signals is introduced. We use the
LFP signals collected from nine patients with PD. Wavelet
coefficients are the features that describe the LFP signal.and
support vector machine (SVM) is the classifier that predicts
the patient’s task.

Section II illustrates the recording procedure and details
of STN LFP signals. Section III describes the methods used
for classification including wavelet transform, analysis of the
LFP data, and SVM classifier structure. Section VI includes
classification results for SVM and k-nearest neighbor (KNN)
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Fig. 1. The electrode tip is placed precisely in the subthalamic nucleus
(STN). A coil of lead wire is left under the skin for later attachment to the
stimulator. Adapted from Figure 6 in [4] with permission.

Fig. 2. Schematic representation of recording electrodes used for LFP
recordings. (above) Medtronic 3389 DBS lead (reprinted with permission of
Medtronic Inc. c© 2008). (below) Alpha omega neuroprobe microelectrode
(reprinted with permission of Alpha Omega, USA c© 2011).

classifier. Section V discusses the results provided by differ-
ent classifiers and concludes the presented method.

II. Data Recordings

Nine subjects undergoing DBS were enrolled in a prior
study of LFP recording during behavioral tasks (see Figure
1). Fourteen recordings were performed which there were
seven left, one right and four bilateral recordings. All sub-
jects were in the off medication state [5]. Subjects provided
informed consent for participation in this research study,
in a manner approved by the institutional review board at
University of Washington.

Paired microelectrodes (pME) or the DBS lead were used
for LFP recording(as seen in Table I). For pME, macro
collars on the microelectrodes were used (Alpha Omega,
Israel). After optical isolation and amplification, the signals
were digitized (4 kHz), band pass filtered (5-300 Hz), and
combined with event markers and subject response signals.
The microelectrode recording (MER) guide tube was used as
common reference. For the DBS lead recording, four contacts
were used. Signals were amplified, digitized (5 kHz), band
pass filtered (1-1000 Hz), and combined with event markers
and subject response signals. A linked mastoid common
reference was used for recording.

Behaviors included motor and speech tasks. The motor
task block consisted of cued repetitions of a button press
using either the ipsilateral or contralateral thumb. For speech
initiation task subjects were asked to name the months of
the year. Speech tasks were also completed in a block
of several repetitions. For task initiation and completion,
subjects received an audio cue from a laptop computer.

III. ClassificationMethod

The LFP data was analyzed in time-frequency domain us-
ing continuous wavelet transform. Proper wavelet coefficients
were selected based on the analysis and fed to an SVM based
classifier.

A. Wavelet Transform

Wavelet analysis methods have been widely used in
biomedical applications [6]. Wavelet transform allows us
to see changes in frequency over time and has been used
for non-stationary signals such as event related synchro-
nization/desynchronization (ERS/ERD) analysis [7]. The
wavelet transform can be defined as [8]:

g(a, b) = ap
∫ ∞
−∞

g(t)ψ(
t − b

a
)dt (1)

where ψ(t) is the analyzing wavelet, b is a time-like trans-
lation variable, a is dimensionless frequency scale variable,
and p is a real normalization parameter. One of the popular

TABLE I

Recording information for each subject

Recording Subject Side Design Speech trials Motor trials
1 1 Bi DBS 54 59
2 2 Bi DBS 75 60
3 3 Lt pME 107 59
4 3 Lt DBS 58 29
5 4 Bi DBS 117 53
6 5 Bi DBS 57 59
7 5 Lt pME 30 29
8 6 Lt DBS 117 53
9 6 Lt pME 53 22
10 7 Rt pME 81 56
11 7 Lt pME 111 60
12 8 Lt DBS 118 58
13 9 Lt pME 111 58
14 9 Rt pME 107 55

Fig. 3. Time-frequency representation of averaged z-scored power
spectral density (PSD) for motor task (above) and speech (bellow). Time
0 corresponds to the onset of button press for the motor task and onset of
speaking for the speech task. Dotted lines display the segments extracted
for classification.

wavelets in biomedical signal processing is complex Morlet
wavelet which is the product of a Gaussian and a sinusoidal
function:

ψ(t) = e(−t/c)2
ei2π f0t (2)

B. Analysis

For this work, time-dependent power spectral density
estimates were calculated for LFP data and averaged for
each task. For the speech task, voice was recorded and used
to detect the onset and offset of each speech trial. For the
motor task a digital channel input from a button press is
utilized to detect the onset of movement. As illustrated in
Figure 3, for both motor and speech tasks there is beta power
suppression proceeding and during the tasks. For the motor
task, beta suppression is followed by a considerable increase
right after movement, while for the speech task, this increase
is not considerable.
C. Support Vector Machines (SVM)

SVM is a state-of-the-art method for classification and
regression which was introduced by Cortez and Vapnik [9].
It has been used widely in pattern recognition and brain
computer interfaces [10]. SVM finds an optimal hyperplane
that separates the two training classes. As seen in Figure
4 the samples of a class located in the closest distance of
the other class are called support vectors and the margin is
the distance between the hyperplane and the support vectors.
SVM orients the margin in a way that it is maximized.

Given (xi, yi), i = 1, 2, . . . ,N as N training set of samples
where xi ∈ Rd, yi ∈ {1,+1}, SVM solves the following
optimization problem described in [11]:

Minimize
1
2

wtw +C
N∑

i=1

ξi

Subject to yi(wtφ(xi) + w0) ≥ 1 − ξi, ξi ≥ 0

(3)

The function φ(.) maps the vectors xi in another space
so that φ(xi)’s are linearly separable. C ≥ 0 is the penalty
parameter of the error term. Lagrangian method is used to
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Fig. 4. SVM uses risk optimization to compare various separating
hyperplanes and chooses the model with the largest margin of separation
[12].
solve the optimization problem. One maximizes the dual
variable lagrangian:

Maximize
N∑

i=1

λi −
1
2

∑
i, j

λiλ jyiy jxi
txj

Subject to 0 ≤ λi ≤ C,
N∑

i=1

λiyi = 0

(4)

A kernel function is defined as K(xi, xj) = φ(xi)tφ(xi).
The Radial Basis Function (RBF) is given as K(xi, xj) =
exp γ‖xi − xj‖

2.
A proper parameter setting improves SVM classification

accuracy. There are two parameters to be set in the SVM
model with RBF kernel: C and γ. Instinctively the γ param-
eter defines the distance a single training example can reach,
which low values correspond to far distances and vice versa.
The C parameter trades off training examples misclassifica-
tion against decision surface simplicity. A low C ensures a
smooth decision surface while a high C attempts to classify
training examples correctly. Experiments are undertaken to
evaluate SVM performance through variations of the C and
γ parameters.

IV. Experimental Results

A. Preprocessing

Both training and testing data were low-pass filtered using
a 80 order butterworth anti-aliasing filter and downsampled
to 100Hz (from 5 kHz or 4kHz) to avoid high computational
load. In the case of DBS lead recordings, LFP channels were
subsequently bipolar re-referenced (0-1, 1-2, 2-3) .

B. Feature Extraction

Wavelet coefficients corresponding to the frequencies be-
tween 8 Hz and 30 Hz with the frequency interval of 1 Hz
and a time window from 500 ms before onset to 3500 ms
after onset were used as features for motor and speech task
samples. For the random segments, a time window with the
same size is applied to the random parts of signal. Note that
the time frequency representation of a random segment can
be any randomly shifted rectangle in Figure 3 along the time
axis.

C. Classification

LibSVM toolbox is used for classification [13]. Empir-
ically (using the evaluation data) C and γ parameters are
assigned to be 500 and 1 respectively. Three binary classifiers
are used for different permutations of tasks (i.e. motor
Vs. speech, motor Vs. random, and speech Vs. random).
Also a three class classification was done for all the tasks.
The results of the SVM classifier is compared with k-
nearest neighbor (KNN) classifier [14] with three different k
values(k = 1, 3, 5) and euclidean distance. In both methods,
principal component analysis (PCA) [15] was performed
before classification for reducing the dimensionality of data

from 9200 to 47 features. For the evaluation of the classifiers,
10-fold cross validation method is used and the results are
presented in Table II.

TABLE II

Averaged percentage of classification accuracies for SVM and KNN

classifiers

SVM KNN
linear RBF k=1 k=3 k=5

speech Vs. motor 81.44 81.36 66.20 66.42 66.90
speech Vs. random 81.69 76.56 76.72 69.46 67.35
motor Vs. random 84.08 82.03 76.93 74.89 73.26

all three classes 73.24 66.50 62.69 58.75 57.23

Two different kernel functions has been used for SVM
classification: RBF and linear. The RBF function is discussed
in Section III. The linear function is claculated by the inner
product of two vectors: k(x, y) = xty+c where c is an optional
constant. Figure 5 presents the comparison results.

Fig. 5. Three class classification results for linear and RBF kernel SVM.

V. Discussions and Conclusions

The main finding of this study is the characteristic time-
frequency patterns of STN-LFP signals during particular
tasks which lead to designing a single trial classification
system for decoding patient’s behavioral goals. This can
further be a part of a closed-loop DBS system that generates
proper stimulation pulse train optimized for patient’s current
behavioral goal. The proposed method which uses continuous
wavelet coefficients as features and SVM as classifier, is able
to perform binary classification with an average accuracy of
82.40% and three class classification 73.24% accurate.

Table II shows that SVM outperforms KNN in accuracy.
For KNN, as dimensionality increases, the distant to the
nearest data point approaches to the distance to the furthest
data point. Therefore high number of features decreases the
performance of the KNN method [16]. Also due to the high
dimensionality, linear kernel function provides a more proper
mapping rather than RBF [17].

The variety of behavioral tasks in this research was limited
by the restricted time in the operating room to perform
the tasks. The reason behind using random segments for
classification is to train the classifier to distinguish “other
tasks” rather than speech and motor. The classification results
for different pairs of tasks (rows 1 to 3 in Figure II) show that
the classifiers performances for speech Vs. motor is nearly
the same when one is random. This verifies that random
segments are proper representations for “other tasks”.

Figure 5 demonstrates that some recordings lead to a
highly accurate classification (recording 5) while for some
others the results are relatively poor (recordings 3, 9, and
10). Even for different recordings of the same subject
(recordings 8 and 9 from subject 6) classification accuracy
is considerably different (see Table I for information about
recordings). This may be the result of different recording
electrode positioning.

The classification results show that SVM classier is more
accurate in distinguishing all the tasks rather than KNN. Also
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linear kernel function provides a better mapping for the SVM
rather than the RBF function and can be considered a proper
tool for task recognition for a closed loop DBS system.

The proposed classification technique can be utilized as
the initial step of designing a high level DBS system.
Recognizing patient’s current task can be led to an optimal
DBS parameter adjustment to decrease the side effects.
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