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Abstract— Epileptic seizures have a clear effect on the regu-
latory mechanisms of the autonomic nervous system, especially
on the cardiac and respiratory controls. Changes in heart rate
and respiration are well known to occur around the onset
of the seizure. This paper studies the ECG signals recorded
from patients suffering from epilepsy, whose ages ranged
from 3 to 48 years. Both focal and generalized seizures are
considered. Changes in cardiorespiratory control and coupling,
are assessed using phase rectified signal averaging (PRSA), wich
is a technique that finds quasi-periodicities in noisy and non-
stationary signals. A positive predictive value (PPV) of 86.21%
with sensitivity of 100% was obtained for focal seizures, and a
PPV of 84.3% with 93.1% sensitivity for generalized seizures.

I. INTRODUCTION

Epilepsy is known to deeply affect the cardiac function
and the control mechanisms of the autonomic nervous system
[1], [2]. Different algorithms have been proposed to detect
epileptic seizures using single-lead ECG [3], [4]. Most of
the algorithms exploit the fact that the heart rate variability
(HRV) is significantly reduced during seizures, and the heart
rate (HR) might increase even before the EEG onset is
observed. These changes in HR are considered to be a
pre-ictal (immediately before the seizure onset) autonomic
symptom in epilepsy. However, these changes are not only
due to the involvement of the central autonomic centers
during seizures, but they can also be caused by motor activity
or by a stress response to the seizure [2]. A different effect
of epilepsy was observed in [1], where it was reported that
epileptic seizures can be accompanied by apnea episodes,
especially when the onset is localized in one of the temporal
lobes.

Keeping in mind these previously reported autonomic ef-
fects, it is expected that changes in cardiorespiratory coupling
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also occur around the seizure onset. In order to determine
whether this is the case, and if a complete decoupling
can be detected at the seizure onset, this paper proposes a
detection algorithm based on phase rectified signal averaging
(PRSA). PRSA was originally proposed in [5], as a method
to detect quasi-periodicities in non-stationary data. Later, in
[6], PRSA was used in the context of autonomic assessment
and cardiovascular risk. An extension to a bivariate version
(BPRSA) was proposed in [7], and it was implemented to
analyze the interactions between respiration and heart rate.

In this study, both the PRSA and BPRSA version are
implemented on the RR-interval time series (RRI) and the
ECG derived respiratory signal (EDR). The coupling between
these two signals is assessed using BPRSA, and the quasi-
periodicities in the heart rate are quantified using PRSA on
the RRI series. Different types of seizures are considered,
namely, focal seizures with onset in the frontal lobe or
in one of the temporal lobes, and generalized seizures. In
addition, both childhood and adult epilepsy are considered.
The biggest challenge is to detect generalized seizures,
especially those with deep motor involvement, and with no
obvious effect in HR.

II. METHODS

A. Data

In this study, two datasets of single-lead ECG recordings,
extracted from continuous video-EEG monitoring of patients
suffering from epileptic seizures, are used. The first dataset
was collected in the epilepsy clinic of UZ Leuven, Belgium,
and it contains 80 seizures recorded from 35 children suffer-
ing from refractory epilepsy. The mean age of the patients
was 9.2 years (range 3-16 years). The onset of the seizures
was annotated by two different EEG specialists, based on
video and EEG. Two types of seizures were recorded: 40
with focal onset and 40 with generalized onset. Twenty
of the focal seizures were originated from the frontal lobe
and the other 20 were originated from the temporal lobes.
Additionally, 11 of the generalized seizures were myoclonic.
Once the seizures were identified, a 5 min ECG segment
was extracted, starting 3 minutes before the EEG onset of
the seizure. The sampling frequency was 250Hz.

The second dataset used in this study is the Post-Ictal
Heart Rate Oscillations in Partial Epilepsy[8], which con-
tains 10 partial seizures and is publicly available in the Phy-
sionet databank [9]. This set consists of 7 ECG recordings,
extracted from video-EEG monitoring of 5 women whose
age ranged from 31 to 48 years, and who were suffering from
epilepsy. All the seizures contained in this dataset were of
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focal nature with or without secondary generalization. The
ECG signals were sampled at 200 Hz, and their duration
ranged from 1h30m up to 3h45m. This dataset is used in
order to test the algorithm on long term ECG recordings.

From each ECG signal/segment, the RR-interval time
series (RRI) and the ECG derived respiration (EDR) are
computed. The Rpeaks are detected by means of the Pan-
Tompkins algorithm, and all missing beats are corrected
using a search back procedure as in [4]. The EDR signal is
computed using kernel principal component analysis (kPCA)
[10].

B. Phase rectified signal averaging

Phase rectified signal averaging (PRSA) [5] is able to
detect quasi-periodicities in non-stationary signals like the
RRI, in the presence of noise and artefacts. This is done
after reducing a given time series x = {xi}

N
i=1

to a shorter
sequence x

′ = {x′

j}
L
j=−L, with x, x′ ∈ R, and L < N . The

shorter sequence x
′ of length K is computed following the

three steps represented in Fig. 1, and described as follows.
1. Given is the RRI series represented by x. The anchor

points (AP) are selected based on the condition xi < xi−1.
These anchor points correspond to accelerations of the heart.
Different conditions for the selection of AP can be used [5],
however, in this study only the pre-ictal tachycardia, on a
beat-to-beat basis, is considered.

2. A window of length 2L is defined around each AP.
The AP that are at the border of the time series, and are
not surrounded by a window of length 2L are discarded.
A total of M anchor points remains. Note that most of
the windows will overlap because most of the points in the
time series are selected as AP. This becomes relevant when
defining the parameter L, which should take into account
the lower frequency one wants to detect. Since the presence
of quasi-periodicities around epileptic seizures is currently
unknown, this study aims to find an optimal value for L that
can reveal important information before, during and after the
ictal period.

3. An average curve x′ is computed over all M windows.
This curve now contains information of quasi-periodicities
related to increases in heart rate. In other words, every time
the heart is accelerated, this curve will provide information
about autonomic responses and coherence in the RRI signal.
Besides, it is also possible to see what happens after an
increase in heart rate, and how long it takes for the heart
to react to these accelerations.

The last three steps briefly described the general procedure
to compute the PRSA curve of segments of heart rate, where
the RRI is used as a trigger and a target simultaneously.
However, a different approach can be considered, namely, the
bivariate version BPRSA [11]. This approach can be used to
study the interaction between two simultaneous time series.
In this work, this is used to find inter-relations between
the EDR signal, which is an estimation of the respiration,
and the heart rate. Here, the anchor points are defined as
decreases in the respiration yi < yi−1, with y = {yi}

N
i=1

representing the EDR. The reason to select decreases in the

respiratory activity as AP, is due to the presence of apnea
episodes during partial seizures [1]. In addition, other studies
have shown that a reduction in respiratory rate might be
associated with seizures, especially with those originated
from the temporal lobe [1][2]. These changes in respiratory
rate can be also detected from x′. Once the AP are identified
in the EDR, M windows are selected from RRI.

C. Continuous detection of epileptic seizures

In order to perform online detection of epileptic seizures,
a moving window of 80 heart beats with an overlap of 79
beats, is used to analyze the RRI and EDR signals. The length
of the moving window was determined experimentally, as the
length that allows to better differentiate between normal and
pre-ictal/ictal activity. Each pair of signals is then used to
extract two different PRSA curves, one where the RRI is
used as trigger and target simultaneously, and one where the
EDR triggers the RRI. This procedure is repeated every time
a new heart beat is detected (see Fig. 1).

Different parameters can be used to quantify the PRSA
curves [12]. For example, the slopes of the lines connecting
the point before and the point after the AP in the PRSA
curves. These features will be denoted as SRR and SResp

for the PRSA derived using only the RRI and using both
the EDR and the RRI, respectively. These slopes will give
an indication on how fast the heart reacts to accelerations,
and how the reduction in respiratory amplitude is related to
changes in the HRV on a beat-to-beat basis. In this study, it
is hypothesized that during epileptic seizures, these reaction
times will be affected due to sympathetic activations, or due
to the involvement of the cardiorespiratory controls during
the seizure. Besides, it is expected that the coherence times
within the signal change due to the significant changes in
HRV.

Once each PRSA curve is quantified, kernel spectral clus-
tering (KSC) [13] is used to group events of different types.
These groups are then labeled, and the cluster containing
the epileptic seizures is identified using the position of the
seizure onset in the EEG. The reason to use an unsupervised
learning technique is that the labels are only known for the
EEG signal, and early or late responses in the ECG are
expected.

All experiments are carried out in MATLAB R2012a on
an Intel R© CoreTM i7, 3.4GHz, 7.8 GB RAM, running Ubuntu
12.04 LTS.

III. RESULTS AND DISCUSSION

The dataset collected in UZ Leuven, was first used to train
the learning algorithm, and to determine the features that best
differentiate between normal and pre-ictal/ictal activity. Each
ECG segment of 5 minutes was analyzed using the moving
window of 80 heart beats as described above, and two PRSA
curves were obtained for each heart beat. The parameter L

was set to 20. This value was selected experimentally, as
the length that allows to see changes in coherence times
within the signal. Fig. 2 shows an example of a focal seizure
originated from the temporal lobe, where clear changes in
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Fig. 1. Computation of the PRSA curves. A window of 80 heart beats in the ECG is used for the analysis. From each window two signals are computed
namely RRI and EDR. 1) Selection of anchor points in the trigger signal RRI (left) and EDR (right). The first 12 AP are indicated. 2) Segmentation of
the target signal RRI, using a window of length 2L around each anchor point. 3) Phase rectification and signal averaging of all extracted segments around
AP. The average PRSA curves are indicated in red.

heart rate can be observed. These changes in temporal lobe
seizures have already been reported in the literature [1][2].
However, in this study changes in cardiorespiratory coupling
around the seizures, were also observed and quantified.

One PRSA curve was computed for each new heart beat,
and as can be seen from the bottom panels of Fig. 2, the
shape of the curves changes around the seizure onset. Note
that the time reversal symmetry of the curves around the an-
chor points (j = 0) is completely broken as the variability of
the heart rate (HRV) is reduced. These changes in symmetry
cannot be detected by any power spectral analysis [6], which
makes PRSA a very powerful technique in this application.
An important fact here is that the coherence time of the signal
also changes. For instance, when the RRI starts to decrease
dramatically, and the analyzed segment includes both pre-
ictal and ictal periods, the predictive power of the signal is
reduced. These changes are linked to the reduced standard
deviation of the HR during seizures [2], [1], which on its turn
can be explained by the propagation of the seizures to the
central autonomic network [2]. An important contribution
of this work is that these changes in coherence time and
symmetry, proper of seizures, can be quantified using the
slope of the line connecting the furthest points to the AP of
both PRSA curves, ∆RR = x′

L−x′

−L, and ∆Res = y′L−y′
−L,

for PRSARR and PRSARes respectively. The panels in the
2nd and 3rd rows of Fig. 3 show these changes. In addition,
this can also be quantified using the first point of the PRSA
curves, namely, x′k

−L, with k = 1, 2, . . . ,M , and M the
total number of windows of 80 heart beats. This parameter
indicates if the quasi-periodicities have already decayed or
not when looking L heart beats in the past of the averaged
AP. For normal activity, the values of x′k

−L should be close

to zero as seen in Fig. 3, 4th row.

Another feature that varies around the seizure onset is the
slope SRR of the line connecting the point before x′

−1
and
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Fig. 2. (top) RRI and EDR signals. Note that the heart rate and respiration
are significantly perturbed around the seizure onset. The PRSA curves are
indicated in the lower panels, and it is important to keep in mind that the first
80 heart beats were used to compute the curves at the position of the 80th

R-peak. It is clear that the perturbations of the heart rate and respiration are
captured by the dynamics of the PRSA curves around the EEG onset.

the point after x′

1
the AP of the PRSA derived using RRI

as target and trigger signals. Fig. 3, 2nd row, show how
this slope becomes less negative during the ocurrence of the
seizure. The reason for this is, again, the reduced variability
of the heart rate during this period.

The four features described above were used to character-
ize each heart beat, and KSC was then implemented to group
them into clusters containing similar activity. The algorithm
was trained using 40 seizures, 20 focal and 20 generalized
(no myoclonic included), and the other 40 were used as
validation. It is important to keep in mind that KSC is an
unsupervised learning algorithm, so no labels were used in
training and validation. The optimal number of clusters and
the optimal kernel parameter were selected using the balance
line fit criterion described in [13]. The optimal number of
clusters was found to be 3, and after analyzing each cluster
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Fig. 3. Features extracted from the PRSA curves of a focal seizure
originated in the left temporal lobe (left), and a generalized seizure (right).
From top to bottom: RR-Interval time series; slope SRR of the line
connecting the point before x′

−1
and the point after x′

1
the AP of x

′;
Difference between the furthest points to the AP of both PRSA curves,
∆RR = x′

L
− x′

−L
, and ∆Res = y′

L
− y′

−L
; Variation of x′k

1
as a

function of time; and cluster memberships, where cluster 3 contains the
epileptic seizures.

TABLE I

SEIZURE DETECTION RESULTS.

Dataset Seizures TP FP PPV Sens

UZ Leuven Focal 40 4 86.9% 100%
Generalized 27 5 84.3% 93.1%

Physionet Partial(Focal) 10 4 71.4% 100%

separately, it was found that cluster number 3 contained most
of the seizures of the whole set. The panels of the last
row in Fig. 3 show the cluster membership as a function
of time, and Table I indicates the positive predictive value
(PPV) and sensitivity for each type of seizure. In order to
determine the amount of TP, a window of 30s before and
after the EEG onset was used. It is not a surprise that the
results for generalized seizures are affected by myoclonic
seizures, since they are brief, normally lasting no more than
2 seconds, and more importantly, they manifest themselves
as rapid contraction/relaxation of a muscle. This implies
motor involvement and very short changes (<2s). For this
reason, the detection of these seizures remains a challenge.
However, 9 of the 11 myoclonic seizures were detected, but
6 false positives were also included (PPV=60%). If these
seizures are included in the generalized results, the total
PPV was reduced to 76.5%. Therefore, other modalities
like EMG or accelerometer data should be included in the
analysis of myoclonic seizures. The results obtained for this
dataset were compared with those reported in [4], which were
obtained from the same dataset. Here an improvement in
the PPV is achieved for both types of seizures, but what is
more remarkable is that the algorithm proposed here reduces
the amount of false positives by more than 50% for the
generalized seizures.

After training and validating the KSC algorithm using the
UZ Leuven, the resulting model was applied to the Physionet
dataset. The PPV and the sensitivity obtained for these partial
seizures in adult epilepsy are indicated in Table I. Note that
the model was trained in a completely different dataset, and

still the algorithm is capable to detect all the seizures, and
produce a relatively high PPV. A total PPV for focal seizures,
including both datasets is 86.21%, with sensitivity of 100%.

IV. CONCLUSION

The algorithm presented in this paper allows to detect
epileptic seizures with PPV of more than 80%, in a win-
dow of 30s around the EEG onset. More importantly, this
methodology is able to detect both focal and generalized
seizures with a comparable PPV and a high sensitivity, which
until now was not achieved by any other algorithm. Another
advantage of this algorithm is that it is easy to implement,
and can be adapted to home monitoring or online detection
systems. These findings represent an important contribution
to the development of closed-loop systems, where the aim is
to abort epileptic seizures. However, it is important to con-
sider training and validating the algorithm for each type of
seizures, and to include different sources of data, to improve
the performance for seizures with motor involvement.
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