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Abstract— This paper uses data analytics to provide a 

method for the measurement of a key driving task, turn signal 

usage as a measure of an automatic over-learned cognitive 

function drivers. The paper augments previously reported 

more complex executive function cognition measures by 

proposing an algorithm that analyzes dashboard video to 

detect turn indicator use with 100% accuracy without any false 

positives.  The paper proposes two algorithms that determine 

the actual turns made on a trip. The first through analysis of 

GPS location traces for the vehicle, locating 73% of the turns 

made with a very low false positive rate of 3%. A second 

algorithm uses GIS tools to retroactively create turn by turn 

directions.  Fusion of GIS and GPS information raises 

performance to 77%.  The paper presents the algorithm 

required to measure signal use for actual turns by realigning 

the 0.2Hz GPS data, 30fps video and GIS turn events.  The 

result is a measure that can be tracked over time and changes 

in the driver’s performance can result in alerts to the driver, 

caregivers or clinicians as indication of cognitive change.  A 

lack of decline can also be shared as reassurance. 

Keywords— Cognitive Measurement, Cognitive Decline, 

Alzheimer Disease, Data Analytics 

I. INTRODUCTION 

The ongoing driving competence of older adults with 
cognitive decline and patients after medical illness or injury 
are two examples of driving groups where monitoring of 
their behaviors can lead to a better understanding of the risk 
in their continued driving and also identify the need for 
preventative measures. Medical professionals face 
challenges currently as they have to determine whether an 
individual should lose their license permanently or 
temporality based on their clinical assessment of the patients' 
abilities.  Compliance of drivers that restrict driving 
voluntarily or due to restricted licenses can also be 
monitored. One cause of functional impairments and 
cognitive decline for aging adults is dementia. Its most 
frequent cause is Alzheimer’s Disease and is expected to 
grow in Canada from 250,000 (1994) to 592,000 (2021) 
patients [1]. The ability and right to drive is important for 
these patients as it enables mobility for social engagements 
and activities as reported by Seeman [2] and Zunzunegui [3] 
that slow the progression of cognitive decline. Similarly, 
Edwards [4] showed patients that stop driving have poorer 
health as a result of reduced social engagements.  

Driving requires cognitive functions to be performed 
safely as it includes executive tasks such as navigation and 
trip planning through to the autonomous/trained responses 
associated with the details of vehicle operation.  Eby [5,6] 
and Molnar [7] have studied the driving habits of subjects 
with cognitive decline and found that they frequently adapt 
their driving patterns, such as restricting distance traveled, 
reduced trip complexity or limiting the time of day. In many 
jurisdictions, physicians are required to advise licensing 
authorities if they have concerns about driving risk.  At this 
time, they use indirect measures such as history, physical 
exam and cognitive tests to help determine driving risk. 
Cognitive change measurement is challenged by limited 
frequency of tests due to limited clinician availability and 
variability caused by patient tiredness, time of day or focus 
as reported by Jimison [8], Morris [9], and Ritchie [10].  
Killane [11] reported on the linkage between cognition and 
measurements of a subject's gait, Kato [12] reported on 
cognitive impairment detection from speech prosody while 
Roy [13] reported on real time measurement of mental 
fatigue through EEG.  

The measurement of executive cognitive function for 
navigation was reported by Wallace [14, 15].  Marshall [16, 
17] and Eby [4] reported on studies of older drivers where 
the vehicles have been out-fitted with sensor technology 
providing additional insights into executive cognitive 
decisions such as trip frequency, duration, distance and time 
of day.  Turn signal use is one of many cognitive functions 
associated with driving as drivers perform (or skip) based on 
their automatic actions through training and experience. Eye 
focus areas is another automatic/trained action and analysis 
to ensure the driver is focusing on the forward direction of 
travel, dashboard, mirrors and blind-spots for the appropriate 
amount of time and at the appropriate times.  

Few driving studies report on the measurement of turn 
signal usage as it requires a source of both the turn indicators 
and the associated events requiring signals.  Eby reported on 
the tracking of turn signal use through tail light electrical 
signals but the use of these signals required modification to 
the car electrical system and the events requiring signals 
were found through the use of a closed course or direct 
researcher observation. Another source of turn signal data is 
dashboard video of the turn signals indicator lamps available 
through the dashboard CANbus interface that uses 
proprietary protocols that vary between automobile makers. 
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On Board Diagnostics II (OBDII) is a standard engine 
computer interface that does not include signal information.   

II. METHOD 

The measurement of turn signal use as an indication of 
autonomous cognition while driving requires sensors that 
allow both the detection of the turn indictors and the events 
requiring signaling.  The chosen sensors consisted of 
dashboard video cameras of the signal lamps and a smart 
phone based GPS sensor.  The latter sensor data was used to 
obtain as-driven GIS turn information from Google Maps.  
Through the application of data analytics techniques to these 
data sets, a measure of turn signal performance is proposed. 
The GPS location technology was previously reported [14, 
15]  and the dashboard video had to accommodate 
dashboards that had the turn signal lamps widely separated 
(two cameras) and those with closely placed lamps (one 
camera). CANbus was not chosen due to the proprietary 
protocols. Signal lamp voltage was also rejected to avoid 
potential impact to operation of the signals and the need for 
no permanent modification on the vehicle. Audio analysis for 
clicking sound is an alternative method to capture the signal 
use, but this would not allow signal direction to be 
determined. The Google Maps API was chosen as a GIS map 
source as it is widely and freely available and the API allows 
for automated algorithms to obtain turn location events.  

A. Dashboard signal lamp detection 

Identification of the turn indicator status is an example of 
a general image processing problem where the event being 
detected has known features (arrow shape in this case) but 
unknown size/scale, position, orientation (tilted or not 
coplanar with camera), noise (vibration) and the detectable 
feature (lamp lit) repeats indicating a longer duration event 
(signal engaged). The algorithm requires the analysis of the 
video to detect the lamp and the signal is on between the first 
detected “on” transition through to the last detected “off” 
transition. The algorithm must adapt to the location of the 
signal lamps on the dashboard, support variation in 
dashboard lamp placement (single video for both or separate 
videos), it needs to distinguish arrows from other signal 
lamps and determine the direction of the arrow. Grey scale 
video images represented by unsigned integers were used in 
the work and analysis was performed on forward and 
backward difference images and associated measures of the 
variance and energy in the delta images. 

                                     (1) 

                               (2) 

                                                             (3) 

                                                                   

                      (5) 

                        (6) 
 

Regions in the image were identified by looking for 
localized areas of high energy in the delta images: 

                                   (8) 

                                   (9) 

 The location of the lamp was observed to move either 
through vibration of by bumping causing a step move in 
position. A candidate window is chosen in region with 
highest energy. Given that the signals cannot be guaranteed 

to be horizontally aligned with the camera frame, the 
correlation is measured for the candidate arrow from -15

o
 to 

+15
o
 rotations in 1

o
 steps. At each rotation of the candidate 

arrow is cropped based on Matlab canny edge detection and 
the correlation of candidate arrow with ideal left and right 
arrows scaled to same size as candidate is measured. If 
maximum correlation of left vs. right is not at least 2% 
different, candidate is rejected as not an arrow removing 
lamps other than arrows. Turn signal state is then created by 
processing the lamp on-off states where the signal is on 
between the first lamp “on” detection to a lamp off detection 
that does not have a lamp on within 0.5 seconds. 

B. Turn detection in GPS data 

The GPS data is analyzed to locate vehicle turns.  At 
each GPS location point, two vectors are formed; A for 
segment entering the location and B for segment leaving the 
location.  To avoid noise from GPS jitter while stopped short 
segments are omitted. The magnitude of the direction change 
is determined from a dot product while cross product 
provides direction. 

                                                                     

                                                 

Candidate corners are then identified as changes greater 
than 30

o
 which are then filtered to ensure higher velocity 

turns (ramps) only have the first of consecutive detections 
accepted. 

C. GIS Turn by Turn route creation 

Google Maps provides a GIS database accessible through 
APIs and previous work has shown these APIs can be used 
to analyze navigational performance. They can be used to 
find the location of turns and merges within a route 
retroactively. Each trip segment is represented by a  start and 
stop location (longitude, latitude) and up to 8 (Google API 
limitation) intermediate locations that are equally spaced in 
time, resulting in a set of routing directions. The route query 
is repeated for 1 less intermediate point for a second measure 
as different points prevent the vehicle from being placed on 
the wrong road, for instance a small GPS measurement error 
near a bridge leading placement on the wrong road. 

The XML file returned by Google Maps Directions API 
includes turn by turn directions for the trip along with trip 
summary information. The trip distance estimate for the two 
sets of directions is compared to the actual as-driven distance 
and the result closest to actual driven distance is chosen.   
The XML turn and merge events set (longitude, latitude, 
direction (left/right) and type (turn/merge)) from the 
directions is a series that has known order of occurrence and 
known location while the GPS trip data is a time series of 
longitude and latitude samples. The turn events need to be 
time aligned to the actual as driven location samples through 
a minimum distance error measure for the as-driven samples 
to the turn events.  A tree search is used to find the ordered 
as-driven locations that provide the minimum total distance 
error for the turn events. 
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D. Correlation of GPS and GIS turns with dashboard video 

The now time aligned GPS data and GIS identified turns 
must be sampling rate aligned with lamp events and this is an 
example of a general sampling rate transformation problem 
where data is not only at highly differing sampling rates but 
in the case of GPS data, the sampling rate is variable and the 
key features of the higher sampling rate must be maintained 
(signal events) as it is down sampled. 

The video events are down sampled to align with 
GPS/GIS information where each new sample reflects the 
state of the turn signal lamps in preceding interval (left, right 
or off).  GPS and GIS turns data and lamp status information 
is then compared resulting in three vectors for each: 

 Signal events associated with turns 

 Signal events not associated with turns 

 Turns with no associated signals. 

III. EXPERIMENTAL RESULTS 

Data was collected for a total of ten trips driven by two 
different healthy drivers [14,15] where each driver drove 
their personal vehicle. The drivers were both male, ages 48 
(Driver 1) and 51 (Driver 2).  The two vehicles had different 
dashboard configurations with one having adjacent turn 
signal lamps (driver 2) allowing one camera to capture both 
signals while the other (driver 1) required separate cameras 
for each signal.   

Video capture of the dashboard proved challenging as car 
designs include shade structures to prevent sunlight from 
getting onto the dash in addition to the steering wheel 
blocking many camera positions.  Only 2 locations were 
found to give an acceptable image of the turn signals.   
Mounting near the driver’s head which was unsafe as it 
could interfere with driver head movements and vision. 
Hanging the cameras from the top of the dashboard between 
the steering wheel and dashboard was chosen.  The cameras 
used were extremely small in size (66mm x 29mm x 15mm) 
so they minimally obscured the dashboard and the driver 
could easily see around them as needed.  This mounting 
location caused the cameras to be mounted upside down 
requiring all analysis to account for the image inversion.  

 

Figure 1: Example right turn lamp image: (a) vehicle 1; (b) vehicle 2. 

An example dashboard image is shown in Figure 1 for 
each of the vehicles.  The video included a time stamp that 
was used for alignment of the video and GPS data.  The 
lower band of the image that included the timestamp was 
excluded from all image analysis. The turn signal events 
captured on video include 225 separate uses of the signals 
that were almost evenly split between left and right (118 
right, 107 left).  The turn signal events ranged from a single 
flash of the lamp through to events of over 100 flashes.  The 
performance of the detection algorithm is shown in Table 1. 

It detected 100% of the signal events with no missed 
detections and produced no false positive detections. The 
algorithm proved to be robust to the effects of vibration from 
car motion or incidental bumps of the camera. 

Table 1: Summary of results for signal arrow detection showing all turn 
signal events were detected with no false positive or false negative errors. 

Signal  Detected False 
Positive 

False 
Negative 

Right signal (n=118) 100% 0% 0% 

Left signal (n=107) 100% 0% 0% 

Combined (n=225) 100% 0% 0% 

 

The addition of rotation to the algorithm was key to 
achieve the performance. Examples of the steps are shown in 
Figure 2 as the shape of car dashboards and camera 
mounting position prevents co-planar and horizontal 
alignment. The candidate arrows are incrementally rotated 
before correlation to determine the optimal result.  The 
image detection using grey-scale isolated the algorithm from 
variation in dashboard lamp colour.  To be able to easily 
identify both the on and off transitions of the lamps, it was 
determined that analysis of a delta image provided the best 
reference. The delta image excluded most of the background 
other than vibration effects so that only lamp transitions 
remained.  A 5 frame delta was found to ensure that at least 2 
deltas were calculated between full on and full off for each 
lamp flash as the lamps needed time to change state. 

 

Figure 2: Example of arrow detection algorithm image processing steps.   
a – Difference image for raw window containing potential signal arrow.  
b – Candidate image rotated to position with optimal correlation.  
c – Edge detection results for rotated candidate arrow.  
d – Cropped candidate arrow used for correlation. 

The results of the GPS analysis and Google based GIS 
remapping are summarized in Table 2. Of the 215 turns 
taken, 73% of them were correctly detected by the GPS turn 
detection algorithm while only 58% were detected by the 
Google GIS algorithm.  A key difference in the two 
algorithms is that the Google GIS algorithm performed well 
locating turn and merge events on the road network but 
failed within parking lots and in transitions from road to 
parking lots.  The GPS algorithm was able to locate non-road 
events but missed merges and some turns into/out of parking 
lots where parking was directly beside the road, with 
minimal travel distance pre/post turn. 

The false positive detection rate on roads is relatively low 
at 2 - 6% for identified corners that are not actual corners.  
Most of these detections are associated with long curved 
segments of a road where traffic causes the driver to slow. 
The extra false positive errors for the Google data are mostly 
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associated with two segments where there was a drop out in 
the GPS data so an alternative path for a portion of the 
segment was returned by the API.  

Table 2: Summary performance for the GPS and GIS remapping algorithms 
in the detection of turn and merge events within the trips. 

Turns GPS only Google only 

Right turns (n=131)   

  Detected turns 73% 62% 

  False Positive errors 3% 5% 

  False Negative errors 14% 23% 

Left turns (n=86)   

  Detected turns 72% 55% 

  False Positive errors 2% 6% 

  False Negative errors 15% 24% 

Total (n=215)   

  Detected turns 73% 58% 

  False Positive errors 3% 4% 

  False Negative errors 14% 21% 
 

The correlation of the turn signal usage events identified 
in the video signals is shown in Table 3. On a standalone 
basis, the GPS algorithm performs better than the Google 
GIS algorithm. This is expected because of the Google 
algorithm does not identify non-road events.  When the 
signal events for the two algorithms are combined, the 
performance improves. 

Table 3: Resulting association of signal lamp use with identified turns. 

Signalled Turns GPS only Google only Combined 

Right turns 81 74 89 

Left turns 55 46 62 

Total 136 120 151 

Table 4: Turn signal usage rates for the two drivers. 

Signalled Turns Driver 1 Driver 2 

Right turns 67% 70% 

Left turns 68% 77% 

Total 67% 73% 

Table 4 shows the performance measures for the two 
drivers where Driver 2 demonstrates a higher tendency to 
signal turns than Driver 1 and provides a different measure 
of driving performance that can be can be combined with 
navigational performance [14, 15]. It is not expected that a 
driver will remember to use their signal at every turn but it is 
expected that a driver will have relatively consistent 
performance and any long term change in this performance 
could indicate cognitive change.    

IV. SUMMARY 

This work demonstrates that an automatic over-learned 
cognitive function associated with driving can also be 
measured adding to the more complex executive cognitive 
functions reported previously.  This requires the use of a 
sensor fusion algorithm of GPS sensor information, GIS 
remapping and a sensor system using video capture and 
analysis of the dashboard videos for signal lamps use.  The 
algorithm provides a measure of the driver’s performance for 
use of turn signals for actual turns performed. The result is 
an algorithm that can analyze a given driver’s performance 
over time as an indication of change in driver ability.  Should 
the driver’s performance show signs of decline, the system 
can provide the driver with feedback.  The results can also be 
shared with the driver’s caregivers and physicians providing 

a much more detailed view on the driver’s performance or 
can be used to determine intervention plans as needed.  
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