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Abstract— The present study aims at designing and evaluating a 

low-cost, simple and portable system for arm joint angle esti-

mation during grasping-like motions. The system is based on a 

single RGB-D camera and three customized markers. The 

automatically detected and tracked marker positions were used 

as inputs to an offline inverse kinematic process based on bio-

mechanical constraints to reduce noise effect and handle 

marker occlusion. The method was validated on 4 subjects with 

different motions. The joint angles were estimated both with the 

proposed low-cost system and, a stereophotogrammetric system. 

Comparative analysis shows good accuracy with high correla-

tion coefficient (r= 0.92) and low average RMS error (3.8 deg). 

I. INTRODUCTION 

Analysing and quantifying human motor act start with 

measuring motions as accurately as possible. Motion capture 

systems usually refer to stereophotogrammetric systems that 

are very accurate but also costly, require expert skills, and are 

not easily portable. Recently, inertial measurement units 

(IMUs) became a popular tool to quantify human motion 

outside the laboratory [1]. However, despite strong ad-

vantages in estimating global spatio-temporal parameters [1], 

the accurate estimate of 3D joint angles (JA) with IMU re-

mains difficult due to non-linear drift occurring when inte-

grating measured accelerations and angular velocities [2]. 

Consequently, to the best of our knowledge, no system can 

provide the absolute position of the sensor without a prior 

calibration phase and a strongly dependent model based 

approach [1]. These drawbacks might explain why such 

systems are rarely used in common clinical applications or for 

in-home rehabilitation programs. Recently, a new type of 

affordable sensor called RGB-D camera is bringing forward a 

number of breakthroughs in human motion analysis and 

robotics [3] by making human motion tracking and quantifi-

cation available to a large public. The Kinect sensor (KS, 

Microsoft®) provides both RGB and depth information and 

embedded human motion tracking software. Several studies 

have analyzed the accuracy of this solution for rehabilitation 

purposes [4-5]. Their general conclusion is that the KS em-

bedded marker-less methods are not reliable and accurate 

enough for quantitative evaluation of human motion. Other 

groups have developed their own algorithms using one or 

multiple KSs [6]. Marker-less pose estimation from mul-

ti-view video has been a long-standing problem in computer 
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vision, and mature solutions exist [Buys]. However, they 

often require a complex calibration phase and a large volume 

to locate cameras. Besides, proposed solutions are not vali-

dated using a gold standard system, and thus are not accessi-

ble to the clinical community. Additionally, a marker-less 

skeleton-tracking algorithm will most probably fail if one or 

several individuals are in close interaction with the tracked 

patient. Finally, other researchers have proposed to fuse 

camera(s) and IMU data in order to handle occlusions and 

improve the general accuracy [7]. These approaches are often 

based on Kalman filter and appear to provide consistent JA 

[7]. However, the use of one or several additional IMU raises 

the overall cost of the system and synchronization between 

different low-cost elements, having a non-constant frequency 

rate, is not always straightforward [8].  

Applications requiring a low-cost user-friendly motion 

capture system are numerous. Single arm grasping while 

seated for example, has been extensively used in post-stroke 

rehabilitation. This task can be performed in the plane or in 

3D, and the variables of interest for clinicians are the wrist 

Cartesian trajectory and the evolution of the shoulder and 

elbow joints [9]. Low-cost solutions also allow patients to 

train in their home environment, so that the burden of mobi-

lizing clinicians can be reduced. In industrial ergonomics, 

such as in car manufacturing, the need for portable systems 

that can be used directly in production lines is also increasing 

to evaluate the efforts endured by workers on a long-term 

basis, as musculoskeletal disorders can appear in worker 

performing repetitive over-head manipulation tasks [10].  

In this context, a marker-based method to estimate arm’s 

JA is proposed using a set of customized markers and a KS 

for arm motions. The accuracy and robustness of the pro-

posed approach is validated with four human subjects over 

different motions using stereophotogrammetric data. 

II. METHOD 

A. Mechanical model 

The human arm was modelled as a serial chain composed 

of two rigid segments articulated by four hinge joints (Fig. 1). 

The JA vector θ=[θ1; θ2; θ3; θ4]
T
 consists in the shoulder 

flexion/extension, the shoulder abduction/adduction, the 

shoulder rotation and the elbow flexion/extension. Very low 

amplitudes were observed at the wrist joints, thus they were 

not considered for the investigated task. The Denavit 

-Hartenberg notation was used to calculate analytically the 

3D positions of the elbow joint 
0
P4 and of the hand 

0
P5 in the 

shoulder frame supposed to be fixed. Analytical inverse 

dynamics model, was calculated to estimate the joint torques 

vector, Γ. Inertial parameters were obtained from anthropo-
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metric tables. 

 
Fig. 1 Model of the human arm composed of 4 hinge joints. 

B. Visual tracker 

A Kinect sensor was located at the height of the subject’s 

pelvis and roughly perpendicular with the sagittal plane at 

approximately 1.5 m. In ideal conditions, the resolution of the 

depth information is of 3 mm
 
[3]. OpenNI middleware [3] 

was used to access the KS calibrated data expressed in the 

world frame coordinate. The embedded camera calibration 

process of OpenNi was used for the sake of simplicity since 

KS lenses exhibit low distortion [3]. As the native skeleton 

tracking of the KS performs poorly to JA estimation, a cus-

tomized marker based motion capture system was developed. 

Three markers Mk1,2,3, 5x5 cm, were printed on standard 

semi-rigid paper and attached to the body using double-side 

tape. This was chosen to maintain the accessibility of the 

system, price and ease-of-use, to comply with the material 

reflectivity sensitivity of the KS, and to be able to detect 

markers in spite of low resolution. The markers were selected 

from a markers list [11] as presented on Fig. 2 for their 

uniqueness, minimizing the risk of false positive. Accurate 

3D pose estimation of such markers is possible with algo-

rithms already used in virtual-reality applications [11]. 

However, they require a small motion of a large size marker 

and thus did not perform well in our case. A cascaded object 

detector based on the Viola-Jones algorithm [12] was trained 

over approximately ten thousands positives images per 

markers using videos collected during the system develop-

ment. The images were collected from different motions in 

different light and environment conditions. Fig. 2 presents an 

overview of the tracking-detection system and of the marker 

trajectories processing. Once the markers are detected in the 

RGB image, the defined region of interest is used to extract 

the features of interest using a speeded up robust feature 

extraction [13]. A Kanade-Lucas-Tomasi (KLT) [14] fea-

ture-tracking algorithm tracked the detected markers over 

time. The KLT tracking algorithm, that estimates the con-

sistency of affine transformations between two consecutive 

sets of tracked points and performs a multi-resolution track-

ing, is known to work well for tracking objects that exhibit a 

strong visual texture, under reasonable shape and lighting 

changes. In the considered application, the markers may be 

lost due to an important out of plane rotation. A marker is 

considered lost if the number of corresponding tracked 

points is inferior to three. When a marker is lost, the detector 

is re-run to re-initialize the KLT tracker. In case of detection 

fail, the human supervisor is asked to manually select the 

markers. If no marker is available the following image will 

be loaded until the marker can be detected again. Due to the 

KS’s depth map estimation technology, 

no-measurement-points may be available in some regions in 

case of projection shadow. 

 
Fig. 2 Overview of the tracking-detection system and marker tra-

jectories processing 

In order to deal with a lack of depth information and noise at 

body segment edge, a median filter is used in 3D to fill the 

possible holes in the depth map. This filter is run only when 

depth information of a tracked marker is missing and it av-

erages a 3x3 pixels matrix without taking into account the 

non-measured-depth points in the calculation. Since the KS 

does not provide a fixed sample rate, data were time 

stamped and resampled at a constant sampling rate of 30 Hz 

using a first order linear interpolation. Cubic splines gap 

filling was used over missing data lasting for less than 5 

samples and all markers trajectories were filtered using a 

low-pass Butterworth zero-phase digital filtering. 

C.  Optimal joint angles calculation  

Starting from the 3D positions of each marker, it is possi-

ble to calculate the JA of the arm model presented in Fig.1 

using its inverse geometrical model. Unfortunately, if the 

markers’ 3D positions are not well estimated, model singu-

larities may occur. To cope with this issue, other inverse 

kinematics methods, inspired by the robotics field, enabling 

real-time estimate, and handling redundancy or singularities 

have been proposed [2].  However, handling occlusion cas-

es, i.e. lack of data, or solving biomechanical constraints in 

real-time is still necessary. For these reasons, an off-line 

optimization process aiming at estimating the arm JA while 

managing physiological constraints, (cts), and occlusions 

(oc) was developed. If all markers positions are available, 

the optimization process aims at finding the four JAs for 

every sample of time, t, that minimizes the normalized 

weighted least square differences between measured and 

estimated positions of the markers as follows: 
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where          (     )     (     )  and N are a 

normalization term and the number of considered samples, 

respectively. The shoulder marker position Mk3 was sub-
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tracted to the positions of the other markers Mk1,2 in order to 

comply with the arm system of reference.   and   are 

weights giving more importance to the tracking of the elbow 

or of the hand marker, respectively. The marker attached at 

the hand is expected to move faster and to cover longer 

distance than the one attached at the elbow. Consequently, the 

resulting hand tracking might be less accurate than the elbow 

one. Therefore, segment lengths were used for the normali-

zation of the fitting:  =1/l1 and  =1/(l1+l2). A set of biome-

chanical constraints must be respected to produce feasible 

motions; first the estimated JA must be within the joint range 

of motion.  

                                                                         

(2a) 

Secondly, estimated joint torques and joint velocities must 

be below representative physiological thresholds.  

     | |             | ̇|   ̇                                      

(2b;c) 

where      and  ̇    are the maximal values of the joint 

torques and velocity, set to     = 100 N.m and  ̇   =90 

deg.s
-1
. These constraints were never active in the optimiza-

tion process, but they had the effect of avoiding discontinui-

ty and thus high instantaneous joint torques and velocities. 

Finally, as proposed by Tao et al. [7], the estimated total 

length of the arm should be equal to the initially measured 

one. 

               
          

               (2d) 

Occlusions were automatically detected and a specific cost 

function was used. As an example, the case of a missing 

elbow marker is taken. In this case, the following hybrid cost 

function, Joc, that minimises the least square difference be-

tween the measured and estimated hand marker and a JA 

regularity term are used to estimate the JA. 
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where     is the vector containing the last estimated JA 

before the occlusion started.  

Finally, constraints forcing the elbow marker positions to be 

equal to the ones calculated just before,   
 (oc), and just 

after,   
        , the occlusion case was added to the opti-

misation process. 

               
 (oc);                

         (4a, b) 

These optimisation problems were solved numerically using a 

gradient-based non-linear constrained sequential quadratic 

programming method [15]. 

C.  Experimental validation  

Four healthy right-handed volunteers (2 males and 2 fe-

males, age 31±5 years, stature 1.8±0.1 m, and mass 89±31 

kg) participated to the study after giving informed consent. 

Volunteers were asked to perform two trials of five grasp-

ing-like motions with their right arm. As illustrated in Fig. 3, 

the hand was moved in 3D from a rest position, to five dif-

ferent positions on the medio-lateral axis localized at the 

upper chest height. An industrial under-car screwing task was 

simulated by volunteers by reaching with their hand a point 

located 0.3 m above their head. The three customized markers 

were located on the top of the upper arm segment, on the 

elbow center of rotation, and on the external side of the hand. 

Eight retro-reflective markers were located on the anatomical 

landmarks defined in the Plug-in-Gait template (VICON©) 

(see Fig 3). Their trajectories were recorded using a stereo-

photogrammetric system (8 Bonita cameras, VICON©, 100 

Hz). The inverse geometric model was calculated using the 

retro-reflective marker positions to estimate relevant JA that 

will be considered references in the rest of the paper.  

 
Fig. 3 Experimental paradigm used to validate the proposed method. 

III. RESULTS 

TABLE I.  SUMMARY RESULTS OF THE ACCURACY ASSESSMENT 

Tr 1; 2 θ1 θ2 θ3 θ4 

S

b
1 

RMS [°] 5.4; 6.0 2.0; 3.0 2.8; 4.1 5.2; 5.1 

NRMS [%] 5.5; 5.7 4.0; 6.0 3.9; 5.0 3.8; 4.8 

r 0.96; 0.95 0.95; 0.92 0.96; 0.85 0.96; 0.95 

S

b 

2 

RMS  [°] 3.5; 4.0 1.4; 1.5 3.2; 3.6 2.7; 3.6 

NRMS [%] 4.2; 5.1 4.6; 3.7 9.9; 9.0 3.1; 4.0 

r 0.97; 0.96 0.96; 0.96 0.87; 0.84 0.98; 0.98 

S

b

3 

RMS  [°] 5.8; 6.2 4.9; 3.9 4.3; 3.8 5.9; 5.2 

NRMS [%] 6.4; 6.9 10.0; 8.9 6.9; 6.3 5.1; 5.0 

r 0.92; 0.92 0.83; 0.89 0.70; 0.91 0.92; 0.94 

S

b

4 

RMS  [°] 3.6; 2.5 3.5; 3.9 3.9; 2.9 3.4; 5.1 

NRMS [%] 4.2; 2.6 10.2; 8.4 9.1; 8.5 4.0; 6.1 

r 0.96; 0.97 0.96; 0.92 0.94; 0.98 0.98; 0.99 

M

ea

n 

RM S [°] 4.6±1.3 3.0±1.2 3.5±0.5 4.2±1.1 

NRMS [%] 5.0±1.3 6.9±2.7 7.3±2.1 4.4±0.9 

r 0.95±0.02 0.92±0.04 0.88±0.08 0.96±0.02 

Initial detection of the three markers prior to starting the 

motion was successful in all investigated cases. Subse-

quently to this detection, the four subjects performed a total 

of (5+1)x2x4=48 grasping motions accounting for 5327 

samples. From these collected samples the detection-tracking 

system asked to the human supervisor to select manually the 

markers twelve times, leading to a very small rate (inferior to 

1 %) of missing data. Fig. 4 shows two representative 

grasping movements and one screwing task and their corre-

sponding tracking, and JA estimates obtained with the pro-

posed low-cost method and with the stereophotogrammetric 

system. The corresponding RMS difference and correlation 

coefficients, r, are reported in the Table 1 under the label “Sb 

1 and Tr 2”. Table 1 presents the results obtained for all the 

subjects and all the trials. The average RMS and correlation 
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coefficients show a good reproduction of JA with the highest 

error observed at the shoulder extension/flexion joint (θ1). 

This can be explained by the large range of motion of this 

joint in the considered task. The RMS difference has been 

normalized by the range of motion of each joint and exhibits a 

relatively small difference at the shoulder level. Fig. 5 rep-

resents the prediction of the trajectories of a simulated miss-

ing marker of the elbow for an extended period of 150 sam-

ples (4.5 s). Despite the non-linear behavior of the elbow 

motion, the algorithm is able to reconstruct quite accurately 

the missing trajectory. 

 
Fig. 4 Representative motions, marker tracking and joint angle estimates.  

IV. DISCUSSION 

The proposed system based on a KS, a detection-tracking 

method and an off-line inverse kinematic process is able to 

estimate the three JA of the shoulder and of the elbow with an 

average RMS difference inferior to 5 deg and a normalized 

RMS difference inferior to 8 % for all considered JA. As 

shown in Fig. 5, a consequent part of the RMS difference is 

due to the low and variable sampling frequency of the KS and 

of its resampling to a constant frequency. Nevertheless, the 

temporal features within the JA estimated with the proposed 

approach are well respected, as are the amplitudes of the JA. 

One can see on Fig. 4 that the shoulder position changes 

during the motion. Shoulder displacement may be exagger-

ated by patients during reaching task and thus reduce the 

efficiency of the rehabilitation protocol [9]. With the pro-

posed system, the shoulder position can be easily estimated, 

in contrast with system using, for example, IMU. Occlusions 

are handled by the presented approach, although experimen-

tations in real clinical environments must be carried out to 

investigate the type and occurrence of the occlusions. In case 

of grasping, motion human motor control field provides 

numerous cost functions [16] that could be used to estimate 

missing markers. Future works will also focus on developing 

a six degree-of-freedom arm model in order to estimate wrist 

motions that were not of interest in the present study. 
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Fig. 5 representative prediction of the missing marker trajectory.  
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