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Abstract— A feature of healthy gait is a clearly defined
heel strike upon initial contact of the foot with the ground.
However, a common consequence of ageing is deterioration of
the heel first nature of gait towards a shuffling gait (flat foot
at contact). Physiotherapy can be effective in correcting this
but is costly and labour intensive. Gait rehabilitation could be
accelerated with home exercise, guided by a biofeedback device
that distinguishes between heel first and shuffling gait.

This paper describes an algorithm that distinguishes between
heel-to-toe gait and shuffling gait on the basis of angular velocity
of the foot, using an inertial measurement unit. Measurements
were made of normal and abnormal gait and used to develop
an algorithm that distinguishes between good and bad steps.

Results demonstrate very good algorithm performance, with
a classification accuracy at the accuracy-optimal threshold
of 92.7% when compared with physiotherapist labels. The
sensitivity and specificity at this threshold are 84.4% and
97.5% respectively. These performance metrics suggest that this
algorithm is usable in a biofeedback device.

I. INTRODUCTION

Kinematic measures of gait are highly variable from
person to person, but a common aspect in healthy individuals
is a heel-to-toe gait in which the heel strikes the ground
before the forefoot [1]. In fact, while the generally accepted
gait cycle definition begins with initial contact (IC), many
sources use the terms initial contact and heel strike (or heel
contact) synonymously for healthy subjects. However, there
is a tendency for gait to deteriorate with age, resulting in
a shuffling gait in which the initial contact occurs with a
flat foot [2]. Other changes include a broader stepping base,
increased time in double support, a less vigorous push off
and a shorter stride length [1].

Gait deterioration is highly prevalent in older adults. A
population study of adults aged over 70 showed a gait disor-
der incidence rate of 35% [3]. Gait disturbances in old age
can stem from a range of sources, including sensory deficits
[4], neurodegenerative disorders such as Parkinsonism [5]
and ataxia [6], and anxiety (fear of falling) [7]. Loss of
healthy gait leads to a higher risk of falling. A study of 3628
falls in elderly individuals found gait/balance disorders to be
the second most frequent cause behind ’environment-related’
causes [8]. Another study of patients who had suffered from
falls found gait disturbances to be responsible in 55% of
cases [9]. Irrespective of etiology, gait disorders generally
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present with a lack of heel-to-toe gait, and physical therapy is
a common treatment. Conventional physical therapy involves
exercises that emphasize the importance of heel strike. The
training is repetitive to help retrain the subject’s gait, and to
build muscle strength. However, therapist time is limited and
expensive, and while home exercise is useful, patients may
practise improper gait unknowingly. Consequently the goal
of this project is to develop a device to distinguish normal
heel-to-toe gait from abnormal gait, and provide feedback
about each step to the user in real time. This will be achieved
based on measurements of gait kinematics with miniature
accelerometers and gyroscopes.

Accelerometers have been widely used for activity moni-
toring and fall detection. A triaxial accelerometer has been
used to distinguish walking events from non-walking in PD
patients and healthy controls [10], while a fall detection algo-
rithm has been implemented using the in-built accelerometers
in smartphones [11]. Regarding specific gait events, a study
successfully detected heel-strike and toe off events in healthy
subjects [12]. While devices that can detect gait events have
been developed, in most cases they do not operate in real-
time, and the software that can operate in real time has been
designed for healthy adults, where heel strike necessarily
precedes forefoot strike. In this paper we present a real-
time algorithm that distinguishes between heel-to-toe gait
and shuffling gait using accelerometer/gyroscope data.

II. DATA ACQUISITION
A. Hardware
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Fig. 1. Shimmer location,
with coordinate system shown

The Shimmer Motion De-
velopment Kit, produced by
Shimmer Sensing, was used
to acquire gait cycle kine-
matic data. The Shimmer Motion
module contains an integrated
3 axis accelerometer (Freescale
MMA7361), a 3 axis gyroscope
(InvenSense 500 series MEMS
Gyros), and a microcontroller
(MSP430) with 8 channels of 12
bit A/D.

The accelerometer range was set to ±6g, and the gyro-
scope range to ±500 deg /s.

The Shimmer module was attached to the subject’s right
foot using the ankle strap supplied with the development kit.
The device was oriented so that its z axis was approximately
parallel with the axis of rotation of the ankle. Figure 1 shows
the device’s location and its local coordinate system.
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During experiments, the Shimmer device sampled six sig-
nals and streamed the data wirelessly to a PC running MAT-
LAB. Signals included three channels acceleration (‘xAccel’,
‘yAccel’, ‘zAccel’) and three angular velocity (‘xGyro’,
‘yGyro’, ‘zGyro’).

B. Experiments

Experiments were conducted to gather the data needed
to develop a reliable algorithm. 7 subjects (mean age 32, 6
female) were recruited. 4 subjects were identified as having
a healthy gait pattern, and 2 subjects were categorized as
having a ’marginal’ gait, defined as gait that is not clinically
characterized as pathological but may still be of concern
during therapy. One subject had a true pathological gait,
resulting from spastic diplegia stemming from cerebral palsy.

Each trial consisted of the subject walking on a treadmill
at a comfortable, self-selected pace. The treadmill allowed
ease of video analysis, while preserving foot/ankle kine-
matics when compared to overground walking [13]. After
finding a preferred speed, data measurement was started.
The 6 axis kinematic data was streamed from the wireless
Shimmer device to a PC running MATLAB. A video of the
experiment,taken from the side and synchronised with the
Shimmer data stream, was recorded to allow each step to be
classified by a physiotherapist. Each trial lasted 60 seconds.

For two subjects, both physiotherapists trained in gait
therapy, trials were run for both normal gait and mimicked
abnormal gait, including of elderly shuffling gait and patho-
logical movements. With the mimicked abnormal gait trials
included, a total of 11 trials were acquired comprising 396
steps.

C. Gold standard step labels

A physiotherapist analysed the video of each experiment,
frame by frame, and assigned each step a rating of good, bad,
or marginal. The main criteria used to determine quality of
step was the angle of the foot on initial contact, a high angle
from the horizontal (toes up) indicating a better step, and
vice versa. Table I shows the distribution of good, marginal
and bad steps that resulted.

TABLE I
BREAKDOWN OF STEP QUALITY OVER ALL TRIALS, AS CATEGORIZED

BY THE PHYSIOTHERAPIST

Good steps 285
Marginal steps 30

Bad steps 81
Total 396

The same physiotherapist analyzed each video twice to
obtain a measure of repeatability. The intra-rater agreement
was found to be moderate (using Kappa’s reliability test
yielded a rating of κ = 75%). To account for human error
in the rating process, the video was analysed further to
measure the angle of the foot at ground contact at each step
using a digital protractor. Figure 2 shows the measured angle
distribution.
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Fig. 2. Distribution of video measured angles, colour coded by physiother-
apist rating. Points have been spread randomly in the x direction to provide
greater visibility of scatter.

It is evident that the measured angle was greater for good
steps than bad steps, however, there is some overlap with
some bad steps having angles in the good range, and vice
versa. The task here was to find the angle that best separates
the two classes. For any given boundary, its suitability can
be quantified by counting the number of steps that lie on the
wrong side of the boundary. These steps are assumed to be
incorrectly classified by the physiotherapist. The boundary
which minimises this count, and hence is the optimal class
boundary, is 6.6 degrees. All steps were then reclassified
as either good or bad based on this boundary. Using this
method, 42 steps were reclassified, including 30 marginal
steps. Repeating this analysis yielded a κ rating of 87%,
which indicates much better repeatability, with a boundary
still in agreement with the physiotherapist.

III. FEATURE EXTRACTION ALGORITHM

A. Hypothesis

The algorithm was based on the hypothesis that the angular
velocity of the foot about the z axis at initial contact (ωz

IC)
is a distinguishing feature between good and bad steps.
The more negative the angular velocity (i.e. the toes rotate
towards the ground), the better the quality of step.

B. Justification

Fig. 3. Angular velocity of the foot. Positive velocity indicates toes moving
upwards. 0% stride is initial contact, shaded zones are 1 standard deviation
from the mean.

Figure 3 shows the mean angular velocities over the
first 15% of the gait cycle for three subjects with different
qualities of gait. This was determined by segmenting the
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angular velocity record into distinct cycles based on time of
initial contact, and calculating the ensemble average. It is
evident that the angular velocity at contact was large and
negative for a healthy patient. This value was close to zero
(flat foot initial contact) for the shuffling gait, while the
diplegic gait subject had a positive velocity indicating that
the toes struck first). This supports the hypothesis for ωz

IC .

C. Algorithm
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Fig. 4. Two sample gait cycles for a good step case and a bad step case.
(A) xAccel (acceleration in the vertical direction) and (B) filtered zGyro
(angular velocity in sagittal plane).

Figure 4 shows representative gait cycles for a good step
and a bad step. For both, there is a high frequency spike in
the xAccel channel at initial contact, accompanied by a local
minimum in zGyro. This minimum is the angular velocity
of the foot at impact, and is the feature to be extracted. The
problem is to determine when initial contact occurs.

Stream data from Shimmer

Filter zGyro data

Search for cycle division point

Wait 0.14s

Determine angular velocity at IC (ωz
IC)

Is ωz
IC >threshold?Good Bad

Generate Feedback

No
Yes

Fig. 5. Algorithm flow chart, showing feature extraction of ωz
IC . The

dashed box shows the feedback mechanism, although this is not imple-
mented during the feature extraction, it gives an example of how feedback
can be determined once a threshold is determined.

Figure 5 shows the algorithm developed to extract the
angular velocity at initial contact. It proceeds as follows:

1) Filter the zGyro channel with a low pass equiripple FIR
filter of order 20, with a pass band of 5Hz and stop band
of 10Hz.

2) Determine the cycle division point, the boundary be-
tween two consecutive cycles, which is the peak angular
velocity during the stride phase. This is determined by

finding the first local maxima of zGyro that is greater
than 50 deg/s.

3) Find a local minimum in zGyro that is greater than 250
deg/s and occurs at least 140ms after the cycle division
point. This is ωz

IC .
4) If no minima is found within 940ms, restart the search

for a cycle division point (step 1).
5) Otherwise restart the search for a new cycle division

starting 390ms after ωz
IC .

D. Classification

Support vector machines were used for classification. The
modified gold standard described in Section II-C was used
for the training set, and classification performance was deter-
mined using 2-fold cross validation. SVM was implemented
using MATLAB’s inbuilt SVMTRAIN and SVMCLASSIFY,
with the training data normalised to a mean zero, maximum
1 range. A box constraint of 1 was used.

IV. RESULTS

Figure 6 shows the grouping of training points for ωz
IC ,

together with the boundary chosen for maximum accuracy.
The two classes were well separated, however some points
were misclassified.
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Fig. 6. 1d classification using ωz
IC , with training points grouped by the

gold standard rating. The points are spread randomly along the x axis for
visibility. The boundary shown is the threshold for optimal accuracy as
determined by SVM.

Figure 7 shows the corresponding ROC curve for the
classification using this feature. ROC curves illustrate the
trade-off between sensitivity (true positive rate, taking a bad
step as a positive diagnosis) and specificity (true negative
rate) as the threshold changes. The threshold shown in
Figure 6 provides maximum accuracy. However, choosing a
different boundary provides the ability to choose a different
sensitivity/specificity balance. The area under the ROC curve
provides a measure of sensitivity/specificity performance
(with a perfect classifier having AUC = 1). The performance
metrics for this classifier are given in Table II, which indicate
very good classification performance.

V. DISCUSSION

Figure 7 shows the sensitivity/specificity performance of
the algorithm. The specific operating point on this curve is
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Fig. 7. ROC curve for feature ωz
IC

TABLE II
CLASSIFIER PERFORMANCE FOR MAXIMUM ACCURACY THRESHOLD

Threshold -60.65 deg/s
Accuracy 92.7%

Area under ROC curve 0.925
Sensitivity 84.4%
Specificity 97.5%

unclear at this stage, however the physiotherapist has sug-
gested that sensitivity should be emphasised over specificity,
with a minimum specificity of 75%. The sensitivity at 75%
specificity is 89.6%, which indicates very good performance.
As it stands, this algorithm is usable in a biofeedback device
since it meets the physiotherapist’s minimum requirements.
However, this has only been tested in ideal conditions
(supervised walking on a treadmill), and other factors need
to be considered, such as uneven terrain and turning.

Orientation: One such factor is the orientation of the
sensor on the foot. The preferred orientation would be to
have the z axis aligned with the axis of rotation of the ankle.
Any misalignment can be decomposed into rotations about
the x, y, and z axes. Rotation about the z axis does not affect
zGyro, hence the algorithm will be unaffected in this case.
Rotation about the x axis would be uncommon because of
the shape of the foot (the sensor would need to be placed
near the toe or the heel for this to occur). Hence, the only
axis which may introduce errors into the algorithm is the y
axis. Errors may arise when the rotation of the foot, normally
aligned with the z axis, is projected partially onto the other
axes. These errors are not apparent in the experiments so far
because care was taken to ensure optimal alignment, however
in an unsupervised case alignment will be a problem.

One way to correct this would be to use a calibration
period to determine the principal axis of rotation, and then
use a change of basis to align the sensor data to this
axis. Another method involves using the gravity acceleration
vector to align the coordinate system. An investigation into
this is underway.

Additional features: The SVM classifier permits additional
features to be added to improve the performance. This was
attempted, with the following features included:

1) Acceleration in vertical direction on initial contact
2) Time delay between peak velocity and initial contact
These features were selected because they appeared to

vary with step quality, although by themselves they did not
provide good classification. Hence they were considered as

supplemental features. However, adding them to the existing
angular velocity feature gave only a small increase in per-
formance (accuracy 93.2%, area under ROC curve 0.934).
Since these features barely added to performance they have
been deemed superfluous.

Future Work: This study was a pilot effort intended to
establish the feasibility of the biofeedback device. As such,
both the sample size and nature of the subjects examined was
determined by opportunity rather than by a strict design. .
A more robust study using both with healthy subjects and
those with clinical defined abnormal gaits will begin shortly.
Secondly, a sensitivity analysis of the algorithm to changes
in orientation will be conducted to determine whether the
orientation is critical.

The algorithm is currently implemented in a MATLAB
graphic user interface (in real time). This is currently running
on a PC. Development of an Android UI for a smartphone
is underway. Once this is complete, usability testing can be
conducted, followed by a clinical trial, which will evaluate
firstly the device performance, and also its ability to assist
with gait rehabilitation.
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