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Abstract — Commercially available devices for Brain-

Computer Interface (BCI)-controlled robotic stroke 

rehabilitation are prohibitively expensive for many researchers 

who are interested in the topic and physicians who would 

utilize such a device. Additionally, they are cumbersome and 

require a technician to operate, increasing the inaccessibility of 

such devices for home-based robotic stroke rehabilitation 

therapy. Presented here is the design, implementation and test 

of an inexpensive, portable and adaptable BCI-controlled hand 

therapy device. The system utilizes a soft, flexible, pneumatic 

glove which can be used to deflect the subject’s wrist and 

fingers. Operation is provided by a custom-designed pneumatic 

circuit. Air flow is controlled by an embedded system, which 

receives serial port instruction from a PC running real-time 

BCI software. System tests demonstrate that glove control can 

be successfully driven by a real-time BCI. A system such as the 

one described here may be used to explore closed loop 

neurofeedback rehabilitation in stroke relatively inexpensively 

and potentially in home environments. 

  

I. INTRODUCTION 

Stroke is one of the leading causes of long-term motor 

disability among adults. Weakness on one side of the body is 

common post-stroke, affecting roughly 85% of survivors. 

An estimated 55% to 75% of survivors suffer from upper 

limb impairment lasting more than 6 months post-stroke 

[1,2]. In terms of recovery, even in the absence of any 

specific treatment intervention the brain demonstrates an 

innate capacity to recover lost function – a phenomenon 

called spontaneous recovery. The neural basis for this 

recovery of function is a complex set of processes 

(comprising molecular, genetic and anatomical aspects) 

which together have been described as neuroplasticity. This 

rewiring of the brain can take place over relatively short 

windows and in fact in the case of motor function, the 

largest changes in recovery of which occur in the first 30 

days. However, for severe patients, recovery processes 

beyond 90 days is also apparent. The post-lesional changes 

to the motor map are however not always adaptive as full 

recovery is not always attained. In many cases, the rewiring 

process can be considered maladaptive in that the patient is 

left with residual abnormal motor patterns and function. 

Fortunately, from a therapeutic perspective, evidence is 
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mounting that the reorganization process during the sub-

acute plasticity window may be guided through appropriate 

behavioral training [3]. Fundamental research particularly 

through studies in animals have demonstrated that 

reorganization is not driven simply by increased use and that 

expansion of cortical representations requires skill-

dependent motor learning behavior. Other studies have 

demonstrated the importance of appropriate stimulation. For 

example a study of the long term plasticity in mouse 

sensorimotor circuits provides evidence that passive 

stimulation of whiskers induced plasticity of subsequent 

whisker-evoked cortical responses [4]. These fundamental 

results are changing clinical rehabilitation perspectives on 

the role of therapy in promoting recovery.  As a result, 

motor therapy comprising task-specific, repetitive, 

prolonged movement training with learning, often guided by 

a therapist who assists in the completion of movement tasks 

[5], may have significant impact on recovery.  However, in 

the case of severe impairment where motor skills have been 

highly affected there is often little or no movement available 

with which the therapist can work with. Patients with such 

severe disability then have few if any therapy options for the 

required type of motor rehabilitation. 

In such cases the application of a brain-computer interface 

(BCI) may provide an alternative approach for 

neurorehabilitation [6]. A BCI can serve a number of 

rehabilitation purposes for recovering stroke patients, for 

example a BCI can be used to substitute for loss of 

neuromuscular functions by using brain signals to interact 

directly with the environment.  Another mode of application 

is to provide a means by which a severely disabled patient 

can engage in activities that may help restore function.  In 

such an application coincident activation of sensory 

feedback loops and primary motor cortex may reinforce 

previously dormant cortical connections through Hebbian 

plasticity and thereby support functional recovery [7]. A 

BCI can help achieve this through a neurofeedback process 

in which measures of motor program engagement can be 

detected with appropriate feature extraction and machine 

learning to produce a control signal which is then used to 

close the feedback loop through triggering of appropriate 

feedback [8]. Recently this feedback is being incorporated 

into robotic or haptic rehabilitation systems. Such an 

approach may have tremendous utility in providing closed 

loop neurorehabilitation to patients with severe deficits. 

Current approaches however require sophisticated, 

expensive mechanical systems which require supervision 

from technical operators.  While these systems represent the 

state of the art in clinical rehabilitation and are capable of 
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fine measurement and performance, they are however 

unsuitable for home deployment given their costs, 

complexity and technical operation requirements. Advocates 

of home-based stroke rehabilitation suggest that there are 

several advantages to moving towards home based 

rehabilitation; there is an opportunity to facilitate the swift 

transition of care for patients from hospital to home, reduced 

risks of nosocomially acquired illnesses and distress from 

prolonged stay as an inpatient [9].  

In this work we describe a compact, inexpensive solution 

for home-based motor-neurorehabilitation comprising an 

EEG-based BCI and simplified haptic feedback system 

based on a pneumatic glove solution. Easy to deploy in a 

home environment it can be considered as complementary to 

approaches in clinical BCI-mediated robotic systems. 

II. METHODS 

A novel pneumatic-controlled finger extension system was 

developed to provide haptic feedback to subjects.  The 

complete system is described here in detail. 

A. Pneumatic Glove  

We repurposed a pneumatic exercise glove which utilizes 

low air pressure to provide assistance of digit extension. The 

glove consists of strategically placed air bladders that run the 

length of each finger. Additional air bladders are situated 

between the fingers to encourage lateral movement. The 

forearm, wrist and individual fingers are affixed to the glove 

with velcro straps, as shown in Figure 1. The development 

of a similar pneumatic glove, the PneuGlove, has been 

described elsewhere [10]. 

B. Pump and Valve Control 

A custom control system, shown in Figure 2, was designed 

to facilitate the inflation and deflation of the glove through a 

computer-controlled interface. 

 

 
Figure 1.  Glove at minimal inflation (top) and at full inflation (bottom) 

A 12 V DC diaphragm vacuum pump (Airpo-D2028B, 

Ningbo Forever Electronic Appliance Co., China.) supplies 

both pressure and vacuum to our system. Inflation and 

deflation of the glove is determined by control of two 

electro-mechanic 3/2 solenoid valves (SMC Corporation, 

Japan. S/N: VDW250-6G-1-01F-Q). The valves exhibit 

binary control allowing for the selective routing of air from 

their input port to one of their two output ports. For both 

valves, the input port is connected to the vacuum pump, one 

output port is connected to the glove and the other is 

connected to the atmosphere. Configuration is presented in 

Figure 3. 

 

 
Figure 2.  Custom pneumatic control system 

 

 
Figure 3.  Pneumatic system 

The system incorporates two independent power supplies: 

5 V DC supplied by USB to power the Arduino platform and 

12 V DC to power the pump and solenoid valves. In order to 

safely control the higher voltage components using 5V logic, 

additional electronics are required, as shown in Figure 4. 

 The inflation time taken for the glove to move the subject 

hand from minimal to maximal deflection was 12 seconds. 

The time to deflate the glove back to its initial state was 10 

seconds. Therefore, total time for inflation then deflation of 

the glove, producing maximal range of hand motion, was 22 

s. 

 
Figure 4.  Circuit for controlling 12 V components with 5 V logic  
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C. Arduino 

An open-source prototyping platform, the Arduino Uno 

(Arduino, Ivrea, Italy), acts as a mediator between the BCI 

and pneumatic glove system. The Arduino receives 

instructions over a serial communication link from the PC 

and carries out appropriate control of the pump and solenoid 

valves. Thus, inflation and deflation of the glove is 

controlled via serial communication with the PC. 

D. Brain Computer Interface 

Electroencephalogram (EEG) was recorded from 27 

Ag/AgCl electrodes placed over the motor and central areas 

according to the 10/20 system of electrode placement. Data 

was recorded using a g.USBamp system (g.tec Medical 

Engineering GMBH, Austria) at a sample rate of 256 

samples per second. We used a modified version of g.tec 

software to implement a real-time two-class Common 

Spatial Patterns (CSP) based BCI [11], which was used to 

send appropriate control signals to the Arduino. 

CSP is a popular BCI method which produces a set of 

spatial filters based on recorded EEG and event data. These 

filters are then used to decompose real-time EEG into new 

CSP signals. The variances of these new CSP signals can be 

used to optimally discriminate between two classes of 

activity [12,13]. 

All sampled EEG was band-pass filtered in the 0.5-30 Hz 

frequency range and had a 50 Hz notch filter applied. EEG 

was further filtered to the 8-30 Hz range before the CSP 

stage of processing. g.tec software [14] was used to remove 

artifact-affected trials and noisy channels, carry out CSP 

analysis, produce CSP filters and train a Linear Discriminant 

Analysis (LDA) classifier for real-time testing. 

 During real-time testing, EEG was filtered as before, 

decomposed by the trained CSP filters and classified by the 

trained LDA classifier. The classifier output was smoothed 

with a moving-average filter of length 0.5 seconds. At a 

specific time after instruction onset (determined during BCI 

training), the smoothed classifier output was sampled. The 

control signal sent to the Arduino was based on this sample 

value. An overview of the entire system is presented in 

Figure 5. 

 

 
Figure 5.  BCI system overview 

 

E. Subject 

Three subjects (all male, aged 24 - 28) participated in a 

system test. Subjects were all self-reported right handed and 

gave oral consent before participation. Subjects were 

recruited from National University of Ireland Maynooth. 

F. Experimental Protocol 

To demonstrate the operation and feasibility of our stroke 

rehabilitation BCI platform, subjects participated in the 

training and testing of an overt movement BCI. During 

training and testing sessions, subjects were seated in a 

comfortable chair, had their hand affixed to the glove and 

followed instructions presented on a PC monitor in front of 

them at eye level. The subjects wore the glove during both 

sessions. 20 rest trials and 20 active trials were presented in 

a randomized order in each session. During an active trial, 

the subject was instructed to perform self-paced dominant-

hand digit contraction and extension, as this action 

resembles the movement induced by glove inflation and 

deflation. 

For the training session, each trial lasted 8 seconds. At 0 s, 

the screen went blank. At 2 s, a fixation cross appeared on-

screen. From 3 s to 4.5 s, an instruction arrow appeared, 

pointing right to indicate a movement instruction or pointing 

left for a rest instruction. From 4.5 s to 8 s, the fixation cross 

remained on-screen. The subjects were instructed to perform 

the action (rest or movement) as soon as the arrow appeared. 

For each subject, the recorded EEG was analyzed to produce 

optimal CSP filters, train the LDA classifier and determine 

the optimal delay after instruction onset to sample the 

smoothed classifier output. 

For the test session, each event lasted 30 seconds. 

Instruction presentation was the same as before except that 

the fixation-cross remained on-screen from 4.5 s to 30 s. 

During these 25.5 s, feedback of the classifier output was 

also presented on-screen in the form of a bar extending to 

the left or right of the centre of the screen. The sign of the 

sampled classifier output determines the decision to inflate 

then deflate the glove or to let it remain deflated. A positive 

sample value indicates movement classification while a 

negative sample value indicates rest classification. As 

inflation and deflation of the glove takes 22 seconds, there is 

sufficient time per trial for full range of hand movement 

induced by the glove. 

III. RESULTS  

A table of classification accuracy results of the BCI test 

sessions is show in Table I. Presented in Figure 6 is a 

representative section of the time course of classifier output 

with timings for active and rest instruction onset, classifier 

sample times, classifier sample points and an illustration of 

the changing air pressure in the glove over time as it reacts 

to the classifier output. 

TABLE I.  SYSTEM TEST RESULTS 

Subject Classification Accuracy 

A 92.5% 

B 90.0% 

C 80.0% 
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IV. DISCUSSION 

The main goal of this paper is to report on the 

development of a simple, affordable and accessible 

neurorehabilitation system which could fulfill the need for 

home-based motor therapy with somatosensory feedback. 

The focus is the novelty of the system as a whole and not the 

results of classification as the BCI software used here is 

quite basic and available commercially. The system 

presented here uses a basic form of CSP, simple 

classification with LDA and a relatively easily-classifiable 

EEG pattern of overt movement activity. Any stage of the 

BCI could be replaced by a more sophisticated design and 

implementation. For example, there are many improvements 

to the CSP algorithm which could be used, a more advanced 

classification method such as Neural Networks or Gaussian 

Process classification could be utilized. Additionally, an 

imagined movement-based protocol could be used to explore 

BCI-based stroke rehabilitation methods [15]. 

Current clinical approaches to BCI-based neurofeedback 

rehabilitation involve sophisticated mechanical devices that 

can accurately administer precise movements with high 

fidelity and control. While these machines represent the state 

of the art in rehabilitation efforts they are largely 

inaccessible due to their operation requirements. Home 

rehabilitation with a system such as the one presented here 

allows for great flexibility by allowing patients and their 

therapists to tailor a program of rehabilitation without 

disruption to the patient’s normal routines. The major 

disadvantage of home-based rehabilitation programs is the 

current lack of specialized equipment and insufficient data 

as to their efficacy. Unfortunately this lack of data makes it 

difficult for companies which might provide BCI-driven 

robotic systems to justify the investment required to make 

this technology widely available. This, in turn, makes 

collection of the required evidential data even less likely to 

happen. We believe that the relatively inexpensive, albeit 

very simple, BCI-driven haptic system described here is an 

example of the type of approach which may help “bootstrap” 

the process of creating the necessary studies which can build 

evidence as to the effectiveness and utility of home-based 

BCI rehabilitation systems. Our future work involves the 

testing of the platform with a number of sub-acute stroke 

patients.  

Many considerations were made while developing this 

platform. The pneumatic glove used is comfortable to wear 

and uses adjustable velcro straps, allowing it to fit different 

size hands. It is easy to don and doff therefore it is entirely 

possible for a family carer or even the user to use the system 

without technical assistance. The glove design inherently 

minimises movement restrictions placed on the user as there 

are no stiff mechanical parts. The pneumatic control system 

was designed with portability in mind, weighing less than 2 

kg and is housed in a compact case. The system can be used 

with any PC, requiring only installation of the software.  

We advocate the replication of our system in the hope that 

it might enable other researchers to experiment with a 

neurorehabilitation-based approach to enhancing motor 

function recovery after stroke using simple robotic systems. 
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Figure 6.  LDA classifier output with event timings (top) and illustrated air 

pressure in the glove (bottom) 

REFERENCES 

[1] D. S. Nichols-Larsen, P. C. Clark, A. Zeringue, A. Greenspan, and S. 

Blanton, “Factors influencing stroke survivors’ quality of life during 

subacute recovery,” Stroke, vol. 36, no. 7, pp. 1480-1484, Jun. 2005. 
[2] S. M. Lai, S. Studenski, P. W. Duncan, and S. Perera, “Persisting 

consequences of stroke measured by the Stroke Impact Scale,” Stroke, 
vol. 33, no. 7, pp. 1840-1844, Jul. 2002. 

[3] N. Dancause and R. J. Nudo, “Shaping plasticity to enhance recovery 

after injury,” Prog Brain Res, vol. 192, pp. 273-295, 2011. 

[4] P. Mégevand, E. Troncoso, C. Quairiaux, D. Muller, and C. M. 

Michel, “Long-Term Plasticity in Mouse Sensorimotor Circuits after 

Rhythmic Whisker Stimulation,” J. Neurosci., vol. 29, no. 16, pp. 
5326-5335, Apr. 2009.  

[5] B. French at al., “Repetitive task training for improving functional 

ability after stroke,” Cochrane Database Syst Rev., vol. 17, no. 4, pp. 
CD006073, Oct. 2007.  

[6] N. Sharma, V. M. Pomeroy, and J. C. Baron, “Motor imagery: a 

backdoor to the motor system after stroke?,” Stroke, vol. 37, no. 7, pp. 
1941-1952, Jul. 2006. 

[7] A. Ramos-Murguialday at al., “Brain-Machine Interface in Chronic 

Stroke Rehabilitation: A Controlled Study,” Ann Neurol., vol. 74, no. 
1, pp. 100-108, Jul. 2013. 

[8] M. Grosse-Wentrup, D. Mattia, and K. Oweiss, “Using brain-

computer interfaces to induce neural plasticity and restore function,” 
J. Neural Eng. vol. 8, no. 2, pp. 025004, Apr. 2011. 

[9] D. Leamy at al., “An exploration of EEG features during recovery 

following stroke – implications for BCI-mediated neurorehabilitation 

therapy,” J Neuroeng Rehabil, vol. 11, no. 1, pp. 9, Jan. 2014. 

[10] L. Connolly at al., “A pneumatic glove and immersive virtual reality 

environment for hand rehabilitative training after stroke,” IEEE Trans 
Neural Syst Rehabil Eng., vol. 18, no. 5, pp. 551-559, Oct. 2010. 

[11] C. Anderson at al., “Home or hospital for stroke rehabilitation? 

Results of a randomized controlled trial. Health Outcomes at 6 
months,” Stroke, vol. 31, no. 5, pp. 1024-1031, May. 2000. 

[12] http://www.gtec.at/Download/Tutorials/Common-Spatial-
Patterns-CSP-BCI-with-g.USBamp-and-Simulink-Two-Classes. 

[13] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial 

filtering of single trial EEG during imagined hand movement,” IEEE 

Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441-446, Dec. 2000. 
[14] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K-R Muller, 

“Optimizing Spatial filters for Robust EEG Single-Trial Analysis,” 

IEEE Signal Processing Mag., vol. 25, no.1, pp. 41-56, 2008. 

[15] http://www.gtec.at/Products/Software/g.BSanalyze-Specs-
Features 

3625


