
  

Abstract—Timed measures of standardized functional tasks are 

commonly used to measure treatment effects in persons with 

upper extremity (UE) paresis due to stroke. The effectiveness of 

their ability to measure motor recovery has come into question 

because of their inability to distinguish between motor recovery 

and compensations. This paper presents three linear regression 

models generated from twelve kinematic measures collected 

during the performance of a two phase reach/grasp and 

transport /release activity as performed by 21 persons with 

upper extremity hemiparesis due to chronic stroke. One of these 

models demonstrated a statistically significant correlation with 

the subjects’ scores on the Wolf Motor Function Test (WMFT), 

a battery of fifteen standardized upper extremity functional 

activities. The second and third models demonstrated a 

statistically significant correlation with the subjects’ WMFT  

change scores elicited by a two week intensive upper extremity 

motor rehabilitation intervention. The high correlation suggests 

that models of kinematic measurements can be used to predict 

neurologic improvement and the effectiveness of treatment. 

I. INTRODUCTION 

Paresis of the upper extremities is one of the major 
problems post stroke. Although many approaches have been 
used for recovery of upper extremity function, the critical 
part of post stroke rehabilitation, measurement of the 
effectiveness of these interventions, still needs some 
improvement. Timed measures of standardized functional 
tasks have become popular because of their high levels of 
ecological validity; however, the effectiveness of their ability 
to measure motor function has come into question because of 
the inability of timed measures to distinguish between true 
motor recovery and effective but abnormal compensatory 
movement patterns[1].  

Changes in kinematic measures have been utilized in the 
rehabilitation literature to document changes in the ability of 
persons with stroke to move their upper extremities through 
space [2]. The complexity of the interaction between the UE 
of persons with neurologic recovery and real world objects 
limit the ability of any single lab-based kinematic measure to 
describe these changes effectively.  Several authors have 
examined models of multiple kinematic measurements and 
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their correlations with standardized clinical tests of UE 
function [3, 4] as well as change in these measures due to 
intervention [4] and the ability of these models to predict 
change in clinical measures due to intervention [4, 5] . 

In this paper we examined the correlation between 
kinematic measures of upper extremity function and the 
Wolf Motor Function Test (WMFT), a clinical test with a 
battery of 15 timed standardized functional movements of 
the upper extremity. High correlation between models of 
these kinematic measures and the WMFT will help establish 
the face validity of these models for the detection of change 
in UE motor function and also help establish the ecological 
validity of these measures for the quantification of change in 
the ability to interact with real world objects. We will also 
examine optimized models of UE kinematics in an attempt to 
identify key measurements for the description of UE 
function, the measurement of change in UE function and 
prediction of the ability to make changes in UE function due 
to an intervention. 

II. METHODS 

A. Subjects 

Subjects were a group of twenty six persons mean (±SD)  
age 51(±11) who have had their stroke at least 9 months 
prior to testing and training (mean (±SD) = 70.4  (±50) 
months. Subjects demonstrated UE impairment due to 
ischemic stroke (n=22) or hemorrhagic stroke (n=4). Mean 
Chedoke McMaster Impairment Inventory Arm Stage was 
5.3 (±1).  Mean Chedoke McMaster Impairment Inventory 
Hand Stage was 4.6 (±1). Mean composite of Ashworth 
Scale scores for shoulder extensors, elbow and finger flexors 
was 3.2 (±2). 

B. Training System and schedule 

Fifteen subjects participated in robot and VR assisted 
training and eleven subjects in clinical rehabilitation 
consisting of repetitive task practice (RTP) for two weeks. 
For robot/VR training New Jersey Institute of Technology 
Robot Assisted Virtual Rehabilitation (NJIT-RAVR) system 
and NJIT TrackGlove system were used. These systems 
improve subjects’ upper extremity motor function by 
requiring three dimensional movements of the shoulder, 
elbow, wrist and fingers of patients during training [6]. 

C.  Data collection 

Reach to grasp task was performed by subject pre and 
post training. Subjects were asked to put their hand at the 
consistent preset initial position. Then they were asked to 
reach to object when cued then grasp the object to targeted 
position and release (see Fig. 1). Four objects were designed 
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so that they have different size and shapes: small circle 
(diameter d=3.2cm), small cube (l=9.5cm, w=3.2), big circle 
(d=5.7cm), big cube (l=6.7cm, w=5.7cm). During the 
experiment, subjects wore an instrumented glove  
(CyberGlove®) with twenty two sensors to obtain finger 
joint angle measurements in real time. It was synchronized 
with a trackSTAR system that acquired wrist, elbow, 
shoulder and sternum positions at the frequency of 100Hz. 
Custom scripts written in Matlab and C++ were utilized for 
data acquisition. Prior to data collection, Cyber Glove 
sensors were calibrated with three hand postures, flattened 
hand with fingers together, hand in a closed fist, flattened 
hand with fingers stretched apart corresponding to zero 
degrees and  ninety degrees in finger flexion, and twenty 
degrees in finger abduction, respectively. 

Clinical Measurements Wolf Motor Function Test 
(WMFT) measurements, a timed evaluation of upper 
extremity performance that measures limb and joint 
movement [7] , were taken pre and post training. Basically 
the higher the WMFT indicate more impairment. 

D. Primary Data analysis 

Twelve kinematic measurements of a reaching,-grasping-
and-transporting-release movement were calculated to show 
changes between pre- and post-training test (Table1). 

E. Secondary Data Analysis 

Least squares multiple linear regression was used to 
examine the correlation between kinematic and clinical 
measures. The first step was to find a linear regression model 
that can estimate WMFT from all twelve kinematic 
measurements. Since kinematic data were normally 
distributed, z-normalization was conducted prior to the 
analysis.  The second step was to eliminate kinematic 
measurements dependency upon each other with stepwise 
linear regression analysis and to identify major contributors 
(kinematics measurements). Coefficient of determination R

2 
 

was calculated in order to evaluate model performance.  

TABLE I. Kinematic Measures 

Measurements, 
abbreviations 

Description (units) 

Reaching Phase 

Hand Trajectory 

Length, RHTL 

Length of path the hand travels during 
reaching  (cm) 

Hand Trajectory 
Smoothness, 

RHTS 

Normalized integrated jerk calculated 
during reaching 

Hand Peak 

Velocity, RHPV 

Measured during reaching (mm/sec) 

Time to Peak 

Velocity, RTPV 

Time to achieve peak velocity during 
reaching (sec) 

Elbow/Trunk 
Excursion Ratio,  

RETR 

Difference in elbow joint angle at 
completion of reaching and Elbow joint 
angle at onset of reaching (deg) / 
difference in trunk position at 
completion of reaching and trunk 
position at onset of reaching (cm). 

Maximum 
Finger 
Extension, 

RMFE 

Index finger angle at maximum 
extension during reaching (deg). 

Finger 

Excursion, RFE 

Change in index finger angle from 
beginning of reaching to maximum 
finger extension (deg) 

Transport Phase 

Hand Trajectory 
Length, 

TTL 

Length of path the hand travels during 
the transport phase (from the point 
when object was grasped until object is 
released at the target) (cm) 

Hand Trajectory 

Smoothness, TTS 

Normalized integrated jerk calculated 
during the transport phase 

Hand Peak 

Velocity, TPV 

Measured during Transport (mm/sec) 

Time to Peak 

Velocity, TTPV 

Time to peak velocity during the 
transport phase (sec) 

Elbow/Trunk 
Excursion Ratio, 

TETR 

Difference in elbow joint angle at 
offset and onset of transport (deg) / 
difference in trunk position at offset 
and onset of transport (cm). 

Abbreviations of measurements for the reach-and-grasp portion 
of the movement start with letter R, and for the transport-release 
portion of the movement with letter T. 

III. RESULTS 

A.  Predicting clinical scores from kinematic measurements 
(Model 1). 

The following model (Eq. (1)) uses pre-test kinematic 
measurement scores to predict pretest WMFT scores and 
post-test kinematic scores to predict post-test WMFT scores. 
High correlation between WMFT scores predicted by this 

 

Figure 1 . Reaching test schematic: Trial begins with hand at rest, placed 
in initial preset position.  At cue, subject reaches for the object, places it 
on a 7.5 cm high target platform, and returns to initial position.  
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model and actual WMFT scores (R
2
= 0.7119, p<0.05) is 

observed (See Figure 2). 

WMFT =  77.1084 + 5.56197 [RMFE] - 6.24909[ RFE] + 
9.20259 [RHTL] + 15.3964 [RHTS]  + 20.1293[ RETR] 
+13.8166[ TTL] + 2.40292[ TTS] - 2.06312 [TETR] + 
8.00461[  RHPV] + 1.84725 [RHPV] + 1.22779 [TPV] + 
8.53163 [TTPV]                 (1) 

Following stepwise regression, an enhanced model 
predicting WMFT scores from kinematic measures is 
presented in Eq.2. Correlation between WMFT scores 
predicted by this model is moderate (R

2
=0.6883, p<0.05). In 

this model RETR and TTL are the major contributors. 

WMFT  =  77.1084 - 6.13741 [RFE] + 7.66842[ RHTL] 
+15.9652[ RHTS] + 17.6837 [RETR] + 18.0784 [TTL] - 
1.49122 [TETR]                       (2) 

B. Predicting therapy-induced changes in WMFT scores 

from changes in kinematic measurements (Model 2). 

The following model (Eq.3) uses changes in kinematic 
measurement scores after training to predict changes in 
WMFT scores after training. Correlation between WMFT 
scores predicted by this model is moderate (R

2
=0.6692, 

p<0.05) (See Figure 3). 
 

WMFT-Change (post-pre) = - 20.7483 + 2.25536 [RMFE] 
+7.71844 [RFE] + 5.30849[RHTL] + 2.50859 [RHTS] + 
1.5463[RETR] - 17.9099 [TTL] - 5.27136 [TTS] + 4.62443 
[TETR] - 1.09701 [RHPV] - 1.43264 [RTPV] - 4.28617 
[TPV] +15.6417 [TTPV]             (3) 

Following stepwise regression, an enhanced model 
predicting WMFT scores from kinematic measures is 
presented in Eq.4. Correlation between WMFT scores 
predicted by this model is moderate (R

2
=0.5749, p<0.05). 

Considering standardized predictors, RHTS and TTL 
provided the largest contribution to the model. 

WMFT-Change (postminpre) = -20.7483 + 1.5265 
[RFE]+ 2.44744 [RHTL] + 12.6192[RHTS] + 0.737369 
[RETR] - 18.4042[TTL] + 0.786927[TETR]      (4) 

C. Predicting therapy-induced changes in WMFT scores 
with pre-training kinematic measurements (Model 3). 

The following model (Eq.5) uses change scores for all 
kinematic measurement scores to predict change scores on 
the WMFT. Correlation between WMFT scores predicted by 
this model is high (R

2
=0.7797, p<0.05). 

WMFT = -20.7483 + 2.11104 [RMFE] + 7.93709 
[RFE] + 14.3117 [RHTL] - 3.75847 [RHTS] - 
1.45387 [RETR] - 18.9314 [TTL] + 4.14153 [TTS] - 
8.87039[TETR] - 4.11828 [ RHPV] - 
2.20693[RHPV] + 2.04246 [TPV] + 0.410069[TTPV]
                                                                 (5) 

Following step wise regression, an enhanced model 
predicting changes in WMFT scores from initial kinematic 
measures is presented in Eq.6. Correlation between WMFT 
scores predicted by this model is high (R

2
=0.7414, p<0.05) 

(See Figure 4) .RHTL, TTS and RFE provided largest 
contribution to the model. 

WMFT = -20.7483 + 8.19867 [RFE] + 10.8782 [RHTL] - 
3.34775 [RHTS] - 2.51885 [RETR] - 14.5958[TTS] - 
7.79483 [TETR]                 (6) 

IV. DISCUSSION 

The statistically significant correlation between scores on 
the WMFT, a battery of timed functional tasks, and a model 
of kinematic measures consistent with improvements in 
motor control suggests that WMFT score and tests like it 
may at least in part describe real changes in motor control 
contrary to the opinions of authors describing these measures 
as indicators of effective compensatory strategies. The 
optimized version of Model 1 contains measurements of the 
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Figure 2. Model # 1 WMFT Scores predicted with a model using all 
twelve kinematic measurements, major contributors were: RETR and 
TTTL. Higher numbers indicate slower times / worse performance. 
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Figure 3. Model # 2 WMFT Change Scores predicted with a 
model   using change scores for all twelve kinematic measurements, 
(major contributors were: RHTS and TTL) vs. actual WMFT change 
scores. Positive numbers correspond with functional improvement. 
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ability to extend the fingers and perform an accurate, 
efficient reaching movement using smaller amounts of trunk 
movement as compared to elbow movement. All are aspects 
of normalized motor control without compensatory strategy.  

The statistically significant correlation between the 
models of change in kinematics and WMFT change score 
support this assertion as well. The optimized version of 
Model 2 contained a measure of trajectory smoothness. 
Changes in this measurement have been cited as an indicator 
of neurologic recovery in persons with stroke. This 
kinematic measurement was also a significant contributor to 
models of two measures related to motor recovery, the Upper 
Extremity Fugl Meyer Assessment and the Motor Status 
Score in a previously published study by Bosecker[3]. 
Correlation between kinematic measures of real world object 
interaction and clinical measures in this study were similar to 
the correlation between robotically created kinematics and 
clinical measures in our previous study [4]. This model also 
contained measures of the ratio of elbow movement to trunk 
displacement for both of the two hand transport movements 
considered. Impairments in this ability are considered one of 
the hallmark features of upper extremity hemiplegia[8]. 
Improvements in these two movements explaining the 
variance in improvements in WMFT scores further support 
the notion that changes in the WMFT may indicate 
neurologic improvement in persons with stroke.  

A baseline level of motor recovery is generally 
considered a pre-requisite for an improvement in UE 
function due to an intervention.  Interestingly, the optimized 
version of Model 3 contained RFE, maximum finger 
excursion during reaching, a measurement of the ability to 
open the hand as well as RHTS, a measurement of hand 
trajectory smoothness during reaching. Both of these abilities 
are considered indicators of neurologic recovery in persons 
with CVA. The coefficients for these two measures were 
positive indicating that higher scores on these parameters 
were consistent with larger improvements in WMFT. Two 
other major contributors to this optimized models included 

the length of the trajectory required to perform a 
standardized reaching movement and the amount of elbow 
extension in proportion to trunk movement. In this sample 
longer, more inefficient reaching trajectories and small 
amounts of elbow movement as compared to abnormally 
high levels of trunk movement were associated with larger 
improvements following intervention. This may suggest that 
these impairments are amenable to behavioral intervention. 
Also, these measures may be useful as clinical screening 
tools for identifying patients with the prerequisite motor 
function to benefit from motor interventions. In addition, a 
majority of the measurements that made substantial 
contributions to the predictive ability of all three of the 
models were collected during the transport phase of the 
movement This phase requires patients to extend the elbow 
as they abduct and flex the shoulder against gravity. This 
action is challenging for persons with UE paresis and may 
prove to be an indicator of motor function improvement.  

V. CONCLUSION 

We developed three linear regression models using 
kinematic measurements collected during reaching, grasping 
and object transport performed by persons with UE 
hemiparesis secondary to stroke. The predictions of these 
models demonstrated statistically significant correlations 
with WMFT scores as performed by the same subjects and 
with the change in WMFT score after a two-week long 
intensive UE motor training program. 
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Figure 4. Model # 3 WMFT Change Scores predicted with a 

model using all twelve kinematic measurements collected at initial 

measurement (major contributors were: RTS, TTS and RFE) vs. 
actual WMFT change scores. Positive numbers correspond with 
functional improvement. 
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