
  

 

Abstract— In a 2-Alternative Forced Choice Interval task 

(2AFCi), a standing subject is required to press a button once 

or twice to signal in which of two 4 s sequential intervals that 

(s)he thought that a short ≤16 mm postural perturbation had 

occurred.  The perturbation might or might not result in 

transient changes of the subject’s Anterior-Posterior Center of 

Pressure (APCOP) or in other measures.  This paper used fuzzy 

inference to explore whether the correctness of a subject’s 

stimulus detection can be gleaned from analyzing changes in 

one of more metrics related to changes in the APCOP.  Also, 

distinguishing guesses from correct responses is a critical issue 

in any psychophysical detection paradigm. Biomechanical and 

psychophysical data are used to design a prediction model based 

on fuzzy inference that is able to discriminate correct responses 

from guesses. 

 
1. INTRODUCTION 

With the growing number of ageing people and 
increasing life expectancy of the older population, postural 
stability is becoming more critical. As people grow older, 
they are increasingly at risk of falling and consequent 
injuries, especially after age 65. Coogler reports that one 
third to one half of the older population experiences fall 
every year [1]. The number of fall deaths in the over 80 
population is nearly as high as the number of motor vehicle 
accident deaths in the 15 to 29 year old population [2]. Falls 
can happen when people cannot control their posture during 
unexpected displacement. Postural control is the ability to 
keep the body’s center of pressure above its base of support. 
Detecting perturbations plays a significant role in preventing 
a slippage that can lead to a fall. 

 The Sliding Investigative Platform for Assessing Lower 
Limb Stability (SLIP-FALLS) is a unique tool for studying 
human balance control [3]. It utilizes a linear motor and air 
bearing slides to drive small translational horizontal move-
ments (0.25 to 16mm) that are in the subject’s natural sway 
range while the subject stands on the platform. Simultan-
eously, data from platform position and acceleration, 3-axis 
head acceleration, platform load cells (to compute AP and 
ML centers of pressure [COPs]) and EMG raw signals are 
stored at 1000Hz and processed into engineering units stored 
at 100Hz. A 2-Alternative Force Choice (2AFCi) psycho-
physical procedure is used to determine the acceleration 
threshold at displacements of 1, 4 and 16mm [3].  

In any psychophysical detection experiment, discrimina-
ting guesses from right answers is a baffling issue. Our pri-
mary objective in this paper is to use the initial knowledge of 
the subject’s COP position to predict whether the subject 

 
 

will correctly detect the perturbation or not, and also to 
discriminate guesses from correct answers. Consequently, we 
may be able to use this knowledge to design a feedback con-
trol system to force a person’s COP to remain within his/her 
base of support at the initiation of slippage (e.g., smart shoes 
to decrease the risk of fall). 

In this study, a fuzzy logic base model was designed to 
take Center of Pressure (APCOP) time series data and the 
subject’s psychophysical responses as inputs for predicting 
perturbation detection. Also, the model is able to distinguish 
guesses from right answers. It is an extension of the work 
first carried out by Bhatkar et al [4].   

2. METHODS 

2.1. Participants and Test Protocol 

The study participants were 10 healthy adults over 49 
y.o. and without diabetes or lower limb peripheral neuro-
pathy. This data was collected at the Shreveport VA Medical 
Center under an Institutional Review Board (IRB) approved 
protocol. In each 2AFC trial, a subject heard four verbal 
instructions from the headphone: “ready”, “one”, “two” and 
“decide”. Each interval was 4 s long. When the subject heard 
the word “decide”, (s)he had to press the wireless doorbell 
button once or twice based on perceiving a movement in the 
interval one or two. The subject was forced to choose either 
the first or the second interval even if (s)he could not detect 
any movement. The length of the platform movement was 16 
mm, and a set of maximum 30 trials was collected for each 
subject. The data collected per trial were: platform position 
and acceleration, anterior-posterior and medial-lateral cen-
ters of pressure (APCOP and MLCOP), lower limb EMG 
signals and head acceleration in X, Y and Z directions. 

2.2. Modeling 2AFC Response 

In our 2AFC experiment, a subject was presented with 
two sequential intervals, in one of which movement hap-
pened. The subject was forced to select an interval, and the 
experimental outcome was recorded as a correct or incorrect 
response. Based on the subject’s responses to the perturba-
tions, each interval of movement can be categorized into [4]:  

 Hit (stimulus present, subject response “present”) 

 Miss (stimulus present, subject response “absent”) 

 False Alarm (stimulus absent, subject response 
“present”)  

 Correct Rejection (stimulus absent, subject 
response “absent”).  
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Our hypothesis was that detection of a marked abnormal-
ity during interval one or two in APCOP data was a key for 
the perception of the correct platform movement interval [4]. 
Our proposed model is based on following assumptions:  

(a) If the stimulus was very small, the signal-to-noise ratio 
was small, therefore the subject’s APCOP data did not 
contain an acceptable difference between APCOP chan-
ges in interval one vs. two; and the subject made a guess.  

(b) If the stimulus was larger, it would cause a marked change 
in the subject’s APCOP data in the stimulus interval.  

Therefore, if APCOP was more affected by movement in 
interval 1, we predicted that the platform moved in interval 
1; and if it was more affected in interval 2, the prediction 
was for interval 2. 

2.3. Selection of Significant APCOP Parameters to Predict 

Platform Movement Interval 

We first present an analysis of 30 trials of 16mm 
perturbation data from a 66 year-old blindfolded healthy 
female (f66z067) without diabetes or lower limb peripheral 
neuropathy (as verified by clinical nerve conduction velocity 
testing). Four seconds each of the subject’s APCOP in 
interval one and two were analyzed and 12 parameters 
produced (7 in the time domain and 5 in the frequency 
domain). The time domain parameters include following 
characteristics: 

 The mean displacement of APCOP (MD); 

  Root mean square of APCOP (RMS); 

 The maximum distance between two points of                          
APCOP travel trajectory (MXD); 

 The total distance of the APCOP trajectory (TX); 

 The mean velocity of the APCOP (MV); 

 The Mean APCOP frequency in Hz (MF); 

 The estimation of APCOP area (SA); 

Also the frequency domain is characterized by following 
parameters: 

 Total Power of APCOP (TP); 

 The frequency range that spectral mass is 
concentrated or centroidal frequency (CF); 

 The diversity in frequency component or frequency 
dispersion (FD); 

 The frequency range over which 50% percent of the 
power spectrum is concentrated (P50); 

 The frequency range that 95% of the power spectrum 
is concentrated (P95); 

These parameters are standard parameters for evaluating 
subject sway and have been used by other researchers [5-9]. 
Each trial had 24 calculated sway evaluation parameters (12 
for each interval).We used an adaptive neuro-fuzzy inference 
system (ANFIS) to find which of the APCOP parameters 
were most significant in predicting the platform movement 
interval. Our significant inputs selection technique is closely 
related to the work of J.S. Jang [10], and is based on the fact 

that the ANFIS model with the smallest root mean squared 
error (RMSE) after one epoch of training has a stronger 
probability of carrying out a lower RMSE when run for more 
epochs of training [10].  

 In our case we only wanted to find the two most signifi-

cant APCOP parameters that predicted the platform move-

ment interval. We constructed 276 (       =276) fuzzy ANFIS 

models each with two inputs (i.e., a combination of 2 of the 

24 APCOP parameters in 30 trials), and one output (platform 

movement interval in 30 trials) in a single epoch of ANFIS 

training. The objective of using ANFIS in this study was not 

to train our main fuzzy model with ANFIS, but to find signif-

icant APCOP parameters for perturbation interval prediction.  

 
3. RESULTS 

3.1 Maximum Difference as Biomechanical Response Index 

The training root mean squared errors for all constructed 

models are shown in Fig. 1. Because we were searching for 

the pair(s) that had the minimum RMSE, we can infer from 

Fig. 1 that pairing APCOP maximum distance, RMS and/ or 

its mean has the potential to be used as predictor(s) of the 

platform movement interval. As such, we analyzed the 

APCOP mean and RMS in both intervals to extract rules for 

our fuzzy model, but this did not give satisfactory results. 

The subtraction of APCOP maximum distance (peak to 
peak) in interval one and interval two (MXD2-MXD1) 
shows a strong correlation between the APCOP maximum 
distance difference and the actual stimulus interval. Fig. 2a 
shows the logistic curve that we used to demonstrate this 
correlation for a 57 y.o. healthy female subject (f57z088) in 
30 trials. Fig. 2b illustrates this relationship across 10 
subjects and 289 trials with the psychometric logistic 
function plotted. The trials were sorted based on platform 
movement interval (0 if stimulus was in interval 1, 1 if in 
interval 2) and the APCOP maximum distance differences.   

A positive difference was associated with an increased 
APCOP maximum distance in interval 2, and a negative 
difference was associated with an increased APCOP 
maximum distance in interval 1. In our classification MXD1 
and MXD2 were the APCOP maximum distances during 
interval 1 and interval 2, respectively. The biomechanical 

Fig. 1.  Root mean squared error plot for 276 two input 

fuzzy models for platform interval movement prediction. 
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response was calculated based on the difference between 
these two values.  

When the difference between these two numbers was 
smaller or greater than specified values (upper and lower 
thresholds), the biomechanical response was set to the 
stimulus interval with the greater maximum distance value 
(see Fig.4). For example, if MXD1 > MXD2, the 
biomechanical response was set to interval 1. Inversely, if 
MXD1 < MXD2, then it was set to interval 2. When this 
difference was between upper threshold (75% in logistic 
curve) and lower thresholds (25% in logistic curve), 
biomechanical response was set to Guess (i.e., there was an 
insignificant contrast between interval 1 and interval 2 
maximum distance difference).  

3.2 Designing the Fuzzy Model   

The design of the subject stimulus detection prediction 
fuzzy model is shown in Fig. 3, where the inputs are the 
APCOP maximum distance differences and the subjects’ 
psychophysical responses. Fig. 4 then shows the APCOP 
membership functions and a logistic curve of all the data in 
the same plot with the absolute threshold set to 0.8 (50% in 
logistic curve). Fig. 5a shows the first input membership fun-
ctions that include three membership functions: Interval 1 
(platform moved in interval 1), Interval 2 (platform moved 
in interval 2), and Guess (there was no clear stimulus signal 
present in the APCoP difference data). A logistic regression 
model of all the data was used to set an absolute threshold 
for the APCOP maximum distance difference.  

Fig. 5b shows the second input membership functions 
that include the subject’s psychophysical response and has 
two membership functions: Click1 (the subject pushed the 
button once), and Click2 (the subject pushed twice). 

Figs. 5c, 5d show the fuzzy model output membership 

functions. Output 1 is active when the subject pushed the bell 

once and includes three membership functions: Hit, False 

Alarm, and Guess. Output 2 is active if the subject pushed 

the bell twice and includes three membership functions: 

Miss, Correct Rejection, and Guess. 

Based on the defined membership functions, the following 

fuzzy rule base was used to map the outputs from inputs: 

 If the subject pushes the button once (Click 1) and 

APCOP is interval 1, then Output1 is Hit. 

 If the subject pushes the button once (Click 1) and 

APCOP is interval 2, then Output1 is False Alarm. 

 If the subject pushes the button once (Click 1) and 

APCOP is Guess, then Output1 is Guess. 

 If the subject pushes the button twice (Click 2) and 

APCOP is interval 1, then Output2 is Miss. 

 If the subject pushes the button twice (Click 2) and 

APCOP is interval 2, then Output2 is Correct Rejection. 

 If the subject pushed the button twice (Click 2) and 

APCOP is Guess, then Output2 is Guess. 

3.3 Performance 

The fuzzy model was built using the fuzzyTECH
TM

 

software, and the data sets of 289 trials were collected over 

10 healthy subjects. The model was applied to predict per-

turbation detection in all subjects. Table 1 shows accuracy of 

the designed fuzzy model for each subject and all data sets. 

As can be seen in Table 1, the designed prediction detection 

model has 95.1 percent accuracy for all data sets. This 

implies that something related to the differences in APCOP 

is linked to successful detection.  

 
 4. DISCUSSION 

We proposed to design a stimulus detection prediction 
model based on finding differences in one or more of a 
subject’s biomechanical variables that corresponded to the 
subject’s correct stimulus detection. We analyzed pairs of 
APCOP metrics abstracted from time series data and found 
that the APCOP maximum distance difference can be used 
as predictor(s) of the platform movement interval. 

 An adaptive neuro-fuzzy inference system (ANFIS) 
was used to extract the significant APCOP parameter for 

(a) 

(b) 

Fig. 2. The correlation between difference in the APCOP maximum 

distance and stimulus interval. (a) The logistic model fit for a subject 

(f57z088). (b) The logistic model fit for 10 subjects. 

Fig. 4. APCOP membership functions and logistic curve 

for all 10 data sets (red). 

Fig. 3. Subject stimulus detection prediction fuzzy model. 
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(a) 

(b) 

(c) 

(d) 

Fig. 5. Stimulus detection prediction model’s fuzzy inputs and outputs 

memberships. 

predicting platform movement. Our model used psycho-
physical and biomechanical data to predict a subject’s 
perturbation detection. Its novelty was that it could dis-
criminate guesses from correct responses where traditional 
signal detection theory cannot. The “Guess” category could 
be considered as an inappropriate name, as the better des-
cription might be that it picked out trials in which signal 
noise ratio was small and the APCOP distance difference did 
not include sufficient information. In this case, the subject 
might have used other information to avoid a pure guess.  

A conceptual error in our model might be the premise that 
the APCOP distance difference provided the sole informa-
tion about which interval contained the stimulus. However, 
our model accuracy (95%) showed that the APCOP differ-
ence did contain significant information about the reaction to 
a short external translational perturbation in blindfolded, 
standing subjects. But what does that imply? It might be that 
one or more of the following changes provide this informa-
tion: 1) distribution of pressures on foot soles (e.g., heels vs. 
balls); 2) lower limb muscle activity (e.g., TA vs. GN); and/ 
or 3) within the vestibular system (otoliths?). Our lab is now 
isolating and investigating these various sources. Knowing 
which source(s) and how the input(s) vary with age and the 
presence of diabetes is currently being investigated, as is 
how they might link with fall potential in these groups.   

REFERENCES 

[1] C. Coogler, “Falls and imbalance,” Rehab. Manag, 1992,  pp. 53-
117. 

[2] D. Winter, “Human balance and posture during standing and 
walking,” Gait and Posture, vol. 3, 1995, pp.193-214. 

[3] CJ. Robinson, L. Faulkner, and M. Purucker, “Design,control and 
characterization of Sliding Linear Investigative Platform For Lower 
Limp Stability (SLIP-FALLS),” IEEE Trans Rehab Engr, vol. 6, 1998, 
pp. 334-350. 

[4] V.V. Bhatkar, et al., “Categorizing and comparing psychophysical 
detection strategies based on biomechanical responses to short postu-
ral perturbations,” Biomedical Engr Online,  9:58, 2010, 22 pp. 

[5] T. Prieto, et al., “Measures of postural steadiness:difference 
between healthy young and elderly adults,” IEEE Trans Biomed Engr, 
vol. 43(9), 1996, pp. 956-966.  

[6] R. Doyle, et al., “Generalizability of center of pressure of quite 
standing,” Gate and Posture, vol. 25, 2007, pp. 166-171. 

[7] C. Maurer, and R.Peterka, “A new Interpretation of spontaneous 
sway measures based on a simple model of human postural control,” 
J. Neurophysiol, vol. 93, 2005, pp. 189-200. 

[8] K. Pline, et al., “Influence of fatigue time and level on increases in 
postural sway,” Ergonomics, vol. 49, 2006, pp. 1639-1648. 

[9] R.J. Schilling, et al., “A quiet standing index for testing the postu-
ral sway of healthy and diabetic adults across a range of ages,” IEEE 
Trans Biomed Engr, vol. 56(2), 2009, pp. 292-302. 

[10] J.S. Jang, “Input selection for ANFIS learning,” Proc 5th IEEE 
International Conf on Fuzzy Systems vol. 2, 1996, pp. 1493-1499. 

3601


