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Abstract—Myoelectric pattern recognition applied to 

high-density surface electromyographic (sEMG) recordings 

from paretic muscles has been proven to identify various 

movement intents of stroke survivors, thus facilitating the 

design of myoelectrically controlled robotic systems for 

recovery of upper-limb dexterity. Aiming at effectively decoding 

neural control information under the condition of neurological 

injury following stroke, this paper further investigates the 

application of wavelet packet transform (WPT) on myoelectric 

feature extraction to identify 20 functional movements 

performed by the paretic upper limb of 4 chronic stroke 

subjects. The WPT was used to decompose the original sEMG 

signals via a tree of subspaces, where optimal ones were selected 

in term of the classification efficacy. The energies in the selected 

subspaces were calculated as optimal wavelet packet features, 

which were finally fed into a linear discriminant classifier. The 

WPT-based myoelectric feature extraction approach achieved 

accuracies above 94% for all subjects in a user-specific 

condition, demonstrating its potential applications in upper 

limb rehabilitation after stroke. 

I. INTRODUCTION 

The restoration of upper-limb function is of great 
importance and a challenging task in stroke rehabilitation due 
to the dexterity of arm and hand. For this purpose, numerous 
upper-limb robotic devices have been designed as assistive 
tools for promoting upper limb motor recovery [1]. Some 
recently developed devices involve interactive control which 
enables active response to user’s intention during the 
rehabilitation training. Such active approach has proven to be 
more effective on motor functional improvement in upper 
limb [2]. Therefore, the implementation of a voluntary control 
is always preferred in developing robot-aided upper limb 
rehabilitation after stroke.  

Myoelectric control is one of the most commonly reported 
techniques for voluntary control of assistive devices using 
electromyographic (EMG) signal [3], which is an electrical 
manifestation of muscle activation according to user’s motor 
intention. The recent development of myoelectric control of 
upper-limb robotic systems is mainly based on a simple 
control strategy that the EMG of a single weak muscle is 
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mapped to a single degree-of-freedom (DOF). Considering the 
complexity of functional movements performed by multiple 
muscles of upper limb, it is unfeasible to implement control of 
multiple DOFs through the single mapping between a muscle 
and a DOF. By contrast, pattern recognition technique has 
shown great potential for implementing multi-DOF 
myoelectric control [2], [4]. The myoelectric pattern 
recognition has been widely applied to the control of 
intelligent prostheses for amputees [3]. The use of myoelectric 
pattern recognition to distinguish intended functional tasks 
performed by the paretic upper limb of stroke survivors was 
firstly reported by Lee et al. [4]. Our pilot study further 
demonstrated the feasibility of identifying movement 
intentions of stroke survivors for control purpose by applying 
pattern recognition techniques to high-density EMG 
recordings from paretic muscles [2]. 

Inspired by our previous finding, further investigation into 
the myoelectric pattern-recognition methods is demanded for 
sufficiently decoding neural control information from paretic 
muscles, with our vision to offer multi-DOF control 
facilitating the recovery of upper limb dexterity after stroke. 
Specifically, EMG feature extraction is the prerequisite to 
myoelectric pattern recognition. A variety of methods for 
EMG feature extraction have been examined by using both 
time-domain and frequency-domain analyses [6-7]. However, 
this task becomes even challenging for stroke survivors due to 
affected EMG characteristics as a result of their neurological 
impairments [11]. Therefore, it is crucial to reexamine an 
appropriate approach that is able to extract separable and 
repeatable features from the EMG signals under the 
specifically considered condition (i.e., hemiparesis after 
stroke). Time-frequency analysis has been reported to provide 
a better understanding and description of the nature of 
non-stationary biosignals like EMG in time-frequency domain, 
thus improving the signal classification as well [12-13]. As a 
representative method for time-frequency analysis, wavelet 
packet transform (WPT) was applied to EMG feature 
extraction in the current study. 

Although previous efforts regarding the WPT-based 
feature extraction have been made for pattern-recognition- 
based myoelectric control in amputees or able-bodied subjects, 
the utility of this method has not been examined in partially 
paralyzed muscles after stroke. The advancement of wavelet 
packet analysis of a raw EMG signal with high resolution in 
both time and frequency domains makes it feasible to extract 
discriminable features highly associated with movement 
intentions of the paretic upper limb. The findings from the 
current investigation may be helpful to implement a 
pattern-recognition-based myoelectric control system 
designed for rehabilitation training of upper limb after stroke. 
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II. METHODS 

A. Dataset Description 

The dataset used in this study was selected from a 
database recorded in our pilot study [2], which was approved 
by the Institute Review Board of Northwestern University 
(Chicago, IL). This database included high-density surface 
EMG recordings from chronic stroke subjects with 
hemiparesis during their performance of different functional 
movements involving the affected upper limb, notably the 
affected hand. The data of four stroke subjects (labeled as 
Sub1-Sub4, corresponding to the subject index 1, 3, 9 and 10 
in [2]) were preliminarily selected to form the dataset for 
testing the myoelectric pattern recognition methods in this 
study. The detailed demographic and clinical measures for 
experimental subjects can be found in [2]. All subjects gave 
their informed consent before the experiment. 

During the experiment, each subject was instructed to 
perform 20 functional movements using the affected upper 
limb, namely wrist flexion/extension, wrist supination/ 
pronation, elbow flexion/extension, hand open/close, thumb 
flexion/extension, index finger flexion/extension, finger 3-5 
flexion/extension, fine pinch, lateral pinch, tip pinch, gun 
posture and ulnar wrist down/up. A video demonstration of 
each movement was also shown as a guide for subjects to 
follow and perform the movements. The experiment protocol 
comprised of 20 trials, each trial consisting of 5 repetitions of 
the same movement pattern. For each repetition, the subject 
was asked to hold the muscle contraction for roughly 3 s and 
then relaxed for a rest period of 5-20 seconds. 

The high-density surface EMG signals in the original 
database were recorded via 89 monopolar surface electrodes 

placed on the affected upper arm, forearm and hand muscles. 
A Refa EMG recording system (TMS International BV, 
Enschede, Netherlands) with built-in band-pass filter between 
20 and 500 Hz was used for multi-channel EMG recording at 
a sampling rate of 2 kHz per channel. Due to the advantage of 
using bipolar (i.e., single differential) EMG recording to 
improve myoelectric classification performance and its 
indeed more clinical relevance, the 46-channel bipolar 
surface EMG data were produced from the original 
89-channel EMG recordings. The detailed information about 
the electrode formation and single spatial differential filter 
was shown in Fig. 1. 

B. Data Segmentation 

The onset and offset of a voluntary EMG activity segment 
corresponding to each repetition of muscle contraction 
needed to be determined first, for all the movement patterns. 
Such information has already included in the database by [2], 
and was directly applied to the selected dataset.  

For each repetition of muscle contraction, the EMG 
activity segment in a form of multiple channels was further 
segmented into a series of overlapping analysis windows with 
a window length of 256 ms and an overlapping rate of 75% 
for two consecutive windows. Consequently, the following 
feature extraction and classification procedure was performed 
on these analysis windows. 

C. Feature Extraction using WPT 

The WPT was a generalized version of classical wavelet 
decomposition method that offers a multi-resolution and 
time–frequency analysis of non-stationary signals, especially 
biomedical signals. The WPT is able to split a signal into a 
detail and an approximation. The approximation and detail 
obtained from the top-level can be further split into a new 
detail and a new approximation, and this process can be 
iteratively performed to a targeted depth. Consequently, the 
WPT generates a binary tree structure of subspaces spanned 
by a set of bases, to which a signal can be mapped for 
multi-resolution analysis. Such characteristics allow WPT to 
be successfully applied to feature extraction in the fields of 
pattern recognition and machine learning [9-10].  

The WPT using 5-order symlet wavelet was first applied 
to each channel of an analysis window for EMG feature 
extraction according to [11]. For WPT analysis, the depth of 
WPT is an important factor. It is acknowledged that a small 
depth cannot yield sufficient resolution for extraction 
effective features, whereas a large depth leads to much more 
computational complexity. By considering this trade-off, the 
WPT depth of 3 or 4 has been recommended by previous 
studies [11]. The WPT depth of 4 was finally chosen after 
some pretests in term of classification performance. After the 
WPT, the energy values of all subspaces were calculated as 
features, where the energy of each subspace was defined as a 
logarithmic value of the summation of all wavelet packet 
coefficients in the subspace. 

D. Feature Selection using Best Basis Selection 

For each channel of an analysis window, the features 
extracted from all subspaces arranged in the binary tree 
structure were regarded to carry redundant information due to 
the signal overlap across levels. A great number of redundant 

 
Fig. 1.  Illustration of the electrode placement for 46-channel bipolar surface 
EMG signal recordings derived from previous 89-channel monopolar surface 

EMG database. 
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features were likely to lead high computational cost and to 
compromise classification performance. Therefore, a feature 
selection procedure relying on the selection of the best bases 
was further performed, involving a criterion of best 
distinction among classes [12]. In this study, Fisher's class 
separability index (FCSI), described in [13], was employed as 
a criterion for best basis selection, which is introduced below. 

Suppose that     
  represents the energy feature from a 

basis derived from the n-th channel (1 ≤ n ≤ N, here N=46) of 
the j-th sample/analysis window (1 ≤ j ≤ Jk) belonging to the 
k-th class (1 ≤ k ≤ K, here K=20). The mean and standard 
deviation of these features for the basis can be calculated as: 
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Thus, the FSCI for the basis was finally defined as: 

 FCSI = ∑ ∑
  ̅ 
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where p and q represent the indices of two different classes. 
Generally, a higher value of FCSI indicates higher degree of 
class separability for features extracted from a certain basis. 

With the FSCI values derived from all bases, the best 
bases with highest values could be selected. It should be noted 
that for the number of selected bases, there was also a 
trade-off between the computational cost and classification 

performance. Thus, 12 bases with the highest FCSI values 
were optimally selected to produce 12 wavelet packet energy 
features for each channel. For an analysis window with 46 
channels, these energy features from all channels were finally 
concatenated to form a 552-dimensional feature vector. 

E. Feature Dimensionality Reduction and Classification 

Even though a feature selection procedure based on the 
best basis selection algorithm was performed to optimally 
select 12 features from each channel, the high-density surface 
EMG recordings still resulted in very high-dimensional 
feature vectors (i.e., 552-dimensional feature vectors). In this 
case, feature dimensionality reduction is of great necessity to 
ensure the generalization capability of a classifier [14]. 
Taking into account the ULDA function of minimizing 
within-class distance and maximizing between-class distance 
by an optimal transformation, ULDA was used to reduce the 
feature dimension [15].  

A linear discriminant classifier (LDC) was employed in 
this study for the pattern classification. The LDC is able to 
model the within-class density of each class as a multi-variant 
Gaussian distribution and gives decisions of unknown 
samples by using the maximum a-posteriori probability 
(MAP) rule and Bayesian principles. The LDC was used due 
to its ease of implementation and efficient classification 
performance [2], [4]. 

Pattern-recognition was performed in a user-specific 
manner, where both training dataset and testing dataset were 
derived from the same stroke subject. To evaluate 
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Fig. 2. Comparing the effect of FCSI index values on separability. Three upper-limb movements (wrist flexion, wrist supination, fine pinch) in the 18-th 
channel from subject 2 are selected to produce the scotter plots. The three-dimensional coordinate axes stand for feature value of the selected index of 

subspaces( labeled from 1 to 30 due to four levels of WPT) from binary structure of WPT, respectively. (a) three features with lower FCSI index value (b) three 

features with higher FCSI index value. 
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Fig. 3.  The class-to-class pseudocolor plot of confusion matrices and classification accuracies derived from (a) Subject 1 (b) Subject 2  (c) Subject 3  (d) 
Subject 4, using the presented WPT features extracted from 46 channels. Results in confusion matrices are averaged across fivefold cross-validation and 

expressed as percentages. In each confusion matrix, the main diagonal elements represent the percentages of correct classifications accuracy for each class 

and others are error rates. The accuracies in the title are calculated by the ratio between the sum of main diagonal elements and the sum of the matrix 

elements. 
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classification performance, a five-fold cross-validation 
scheme was used. The EMG data during any four repetitions 
of muscle contraction were selected and assigned as training 
dataset, whereas the EMG data of the remaining repetition of 
muscle contraction were sequentially used to form the testing 
dataset. As a supervised pattern recognition procedure, the 
best basis selection and feature dimensionality reduction were 
determined only with training dataset, and then were applied 
to the testing dataset. Finally, the classification performance 
for each subject was evaluated as overall classification 
accuracy, which was calculated as the percentage of correctly 
classified windows over all the testing windows including all 
movement patterns over five-fold tests. 

III. RESULTS 

A. Results of Best Basis Selection 

Fig. 2 is a three-dimensional scatter plot to show effect of 
FCSI index values on class separability. Features with three 
lowest FCSI values (Fig. 2a) did not show good separability 
across three different classes as compared with features with 
three highest FCSI values (Fig. 2b). It indicates the 
effectiveness of WPT-based feature selection via best basis 
selection approach relying on FCSI.  

B. Results of Classification 

Fig. 3 depicts the movement pattern classification results 
in the form of confusion matrix for four subjects respectively. 
It can be found that high classification accuracies above 94% 
were achieved for all subjects. Examination of the confusion 
matrix results revealed that the misclassifications were not 
consistent among subjects. For example, the movement 
pattern with major misclassifications for subject 1 was fingers 
3-5 extension, whereas it was hand open for subject 3. 

IV. DISCUSSION AND CONCLUSION 

In this paper, myoelectric pattern recognition based on 
wavelet packet transform was examined for identifying 
movement intentions from the affected limb of stroke 
survivors. In contrast to conventional prosthetic control using 
EMG signals from neurologically intact muscles, there are 
many unique challenges in the application of pattern 
recognition techniques on EMG from stroke survivors for 
driving assisted devices for rehabilitation purpose. For 
example, neural control information may not be convoyed 
sufficiently due to the affected neuromuscular pathway after 
stroke. Therefore, advanced pattern recognition techniques, 
especially effective feature extraction methods, need to be 
performed to sufficiently discover and decode neural control 
information hidden in the surface EMG recordings from 
partially paralyzed muscles. The WPT is such a powerful 
method, which is able to offer flexible time-frequency 
resolution of a signal, thus facilitating the extraction of many 
feature components containing discriminable information 
from a complex biosignal with the aid of best basis selection 
based on statistical criteria. Taking advantage of such 
properties of WPT, myoelectric pattern recognition based on 
WPT was examined for discriminating 20 different functional 
movements involving the affected limb of the stroke subjects. 

The experiment results shows that high classification 
accuracies can be achieved for all 20 intended upper-limb 
movements across four subjects by using WPT as the tool of 

feature extraction. Among all four stoke subjects, the high 
accuracies above 94% were found. It indicates that the WPT 
can be applied to myoelectric pattern recognition for upper 
limb rehabilitation after stroke. 

However, the high-density EMG recording is unfeasible 
to be clinically applied to myoelectric control of assistive 
devices. Therefore, it’s necessary to reduce the number of 
channels. Considering the power of WPT feature selection 
based on WPT used in this paper, the potential of extending 
this approach into EMG channel selection needs to be 
examined. This remains our future work.  
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