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Abstract— Numerous recent studies have aimed to improve
myoelectric control of prostheses. However, the majority of
these studies is characterized by two problems that could be
easily fulfilled with recent resources supplied by the scientific
literature. First, the majority of these studies use only intact
subjects, with the unproved assumption that the results apply
equally to amputees. Second, usually only electromyography
data are used, despite other sensors (e.g., accelerometers) being
easy to include into a real life prosthesis control system. In this
paper we analyze the mentioned problems by the classification
of 40 hand movements in 5 amputated and 40 intact subjects,
using both sEMG and accelerometry data and applying several
different state of the art methods. The datasets come from the
NinaPro database, which supplies publicly available sEMG data
to develop and test machine learning algorithms for prosthetics.
The number of subjects can seem small at first sight, but it is
not considering the literature of the field (which has to face the
difficulty of recruiting trans-radial hand amputated subjects).
Our results indicate that the maximum average classification
accuracy for amputated subjects is 61.14%, which is just
15.86% less than intact subjects, and they show that intact
subjects results can be used as proxy measure for amputated
subjects. Finally, our comparison shows that accelerometry as a
modality is less affected by amputation than electromyography,
suggesting that real life prosthetics performance may easily be
improved by inclusion of accelerometers.

I. INTRODUCTION

Hand prostheses controlled by surface electromyography
(sEMG) are normally used in clinical practice but most often
they offer only 2 or 3 degrees of freedom and the number
of movements that the subjects can perform is therefore
limited (usually opening and closing of the prosthesis).
The number of movements can be increased using specific
control sequences but in these cases the movements are far
from being natural and easy to be reproduced. The recent
introduction of mechatronically advanced prostheses has led
to increased research on how electromyography can be used
to control highly articulated robotic hands. Especially the
advent of modern signal processing and machine learning
techniques has resulted in a drastic boost in performance in
the research setting. However, the majority of these studies
is characterized by two problems that can easily be fulfilled
with recent resources supplied by the scientific literature.

First, (due to the difficulty of recruiting amputated sub-
jects) most of previous studies rely on the unproved assump-
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tion that the results obtained on intact subjects apply equally
to amputees, which is not trivial because the amputation
causes changes to the muscular anatomy and physiology
(that may affect also myoelectric control performance). An
extensive literature review by Peerdeman et al. [1] reveals
that most of the studies aimed to the control of robotic
hands concentrate almost exclusively on intact subjects
performing less then 10 movements (with a maximum of
12 intact subjects performing 6 different movements [2]).
Some other studies analyzed the combination of the two
modalities in the recognition of sign language in intact
subjects [3, 4], but this aim is far from the functional needs
of hand amputated subjects. The few studies that include
also amputated subjects usually consider less then 5 of them
and (according to our knowledge) the maximum number
of amputated subjects in a journal paper is 6 (performing
only 10 different movements) [5]. Few studies compared
the myoelectric performance of the intact arm with the one
of amputated arm in unilateral amputees [6, 7], while other
studies compared performance of transradial amputees with
intact subjects [8, 9, 10] without assessing the possibility to
use intact subjects results as a proxy measure for amputated
subjects. Only Scheme et al. [11] compare performance of
multiple classification methods, noting the consistency of the
relative performance between intact and amputated subjects.
However, the authors do not provide statistical tests to
establish this consistency, nor do they compare performance
of different feature extraction methods. So even though
their observation reinforces the acceptability of comparing
algorithms using data from intact subjects, it does not provide
conclusive evidence.

Second, the majority of these studies use only elec-
tromyography data, despite other sensors (e.g., accelerometry
(ACC)) being easy to include into a real life prosthesis
control system. The use of ACC in the classification of hand
movements was recently proposed on intact subjects [12, 13,
14], and it poses the question if accelerometry as a modal-
ity is less affected by amputation than electromyography
(EMG). The potential use of accelerometers on amputated
subjects is particularly interesting from a practical point of
view, since their small size and low cost means that they
could easily be integrated in prosthetic sockets.

In this paper we analyze the two mentioned problems by
the classification of 40 hand movements in 5 amputated and
40 intact subjects, using both sEMG and accelerometry data
and applying several different state of the art methods. The
datasets come from the Non-Invasive Adaptive Prosthetics
(NinaPro) Project [15], which has the aim to help the sci-
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TABLE I
CLINICAL DATA OF HAND AMPUTATED SUBJECTS.

Subject Age Missing Years by Remaining Handedness
Hand Amputation Forearm (%)

1 50 Right 5 30 Right
2 67 Left 1 90 Leftt
3 35 Right 7 0 Right
4 44 Right 14 90 Right
5 45 Right 15 90 Right

entific progress in the field of sEMG movement recognition
with a publicly available benchmark database. The number
of amputated subjects can seem small at first sight, but it is
not considering the literature of the field (described at the
beginning of this section), which has to face the difficulty of
recruiting trans-radial hand amputated subjects. Our results
indicate that the maximum average classification accuracy for
amputated subjects is just 15% less than intact subjects and
that intact subjects results can be used as proxy measure for
amputated subjects under some assumptions. Moreover, our
comparison shows that accelerometry as a modality is less
affected by amputation than electromyography, suggesting
that prosthetic performance may easily be improved by
inclusion of accelerometers.

II. EXPERIMENTAL SETUP

The amputated subjects group is composed by five trans-
radial amputated male subjects with clinical characteristics
described in Table I. The control group is composed by
intact subjects (28 males, 12 females; 34 right-handed, 6 left–
handed; average age 29.9 years with standard deviation 3.9
years). The number of subjects can seem small at first sight,
but (as described in Section I) it is not considering the litera-
ture of the field, which has to face the difficulty of recruiting
hand amputated subjects. The sEMG data were acquired
according to the final version of the NinaPro acquisition
protocol, which includes 6 repetitions of 50 movements.
While subjects performed the sequence of movements as
instructed by a video stimulus, their myoelectric signals were
continuously recorded using 12 DelsysTM Trigno wireless
electrodes (see Figure 1a). Each of these electrodes also in-
tegrates a 3-axis accelerometer that measures a combination
of mechanomyography (MMG) and overall arm dynamics.
Details about the acquisition protocol and the movements
can be found in the dedicated papers [15, 16]. In particular,
the movements are exactly the same ones described in the
journal paper by Gijsberts et al. [17].

We followed the classification setting used by Gijsberts
and Caputo [12], which is based on the popular control
scheme by Englehart and Hudgins [18] consisting of prepro-
cessing, windowing, feature extraction, and finally classifi-
cation. Since our goal is to investigate whether classification
performance behaves similarly for intact and amputated
subjects, we intentionally introduce variation by considering
a diverse set of feature extraction and classification methods.

(a) Intact

(b) Amputee

Fig. 1. Example of electrode placement (a) on an intact subject and (b)
on an amputee. Note specifically the difference in limb volume.

TABLE II
FEATURE CONFIGURATIONS.

Name Modality Window Configuration

RMS sEMG 400ms
WL sEMG 400ms
mDWT sEMG 400ms db7 wavelet, 3 levels
HIST sEMG 400ms 20 bins, 3σ threshold
MEAN ACC 400ms

These methods were selected both based on popularity and
to ensure a diversity in approaches.

The selected feature extraction methods are Root Mean
Square (RMS), Waveform Length (WL), sEMG Histogram
(HIST) [19], and marginal Discrete Wavelet Transform
(mDWT) [20]. All these feature representations were applied
successfully to myoelectric signals in general and on the
NinaPro dataset in particular [21, 12, 17]. Furthermore, they
represent a rather diverse set of approaches, covering tradi-
tional and low-dimensional (RMS), popular (WL), advanced
(mDWT), and high-dimensional (HIST) representations. Ta-
ble II summarizes the configuration for each of the feature
types.

While Gijsberts et al. [17] only considered a non-linear
Kernel Regularized Least Squares (KRLS) classifier, here we
diversify the classification step by also including Linear Dis-
criminant Analysis (LDA) and k-Nearest Neighbors (k-NN).
LDA is a well-known statistical method to find a linear
discriminant that maximizes the ratio of between-class scatter
to within-class scatter [22]. It has been extensively used for
myoelectric control [18] and is representative of classic pat-
tern recognition approaches. This is in contrast to the more
recent machine learning techniques such as KRLS or Support
Vector Machines, which incorporate kernel machinery and
regularization to address non-linearity, noise, and the curse of
dimensionality. Finally, k-NN is a non-parametric technique
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Fig. 2. Average classification accuracy for intact and amputated subjects
for the baseline (BL) and the twelve combinations of features and classifiers.

that classifies samples based on a majority vote among the k
closest training samples [22]. Unlike KRLS and LDA, it di-
rectly transduces label information from the training samples
to the test samples without first inducing a model. Despite
its conceptual and computational simplicity, it can achieve
excellent performance provided that sufficient training data
is available. Based on prior experience [12], the KRLS clas-
sifier has been used with the exp-χ2 kernel for all considered
feature representations. The kernel parameter γ and the regu-
larization parameter λ are optimized using grid search, where
γ ∈

{
2−20, 2−19, . . . , 23

}
and λ ∈

{
2−16, 2−15, . . . , 23

}
.

For k-NN, we instead select the number of neighbors
k ∈ {1, 3, 4, 5, 6, 7, 9, 11, 15}. Furthermore, integration of
sEMG and ACC is implemented for the KRLS classifier by
a linear combination of cue-specific kernels [17], where the
kernel weights w ∈ {0.0, 0.1, . . . , 1.0} were chosen such
that wsEMG + wACC = 1.

III. RESULTS

The average classification accuracy for the twelve combi-
nations of feature extraction and classification methods are
shown in Figure 2. The figure also contains a baseline result,
which is defined as the accuracy obtained when predicting
exclusively the most frequent class (i.e., the rest posture).
The performance for amputees is always less than 20%
inferior to the performance for intact subjects. The decrease
in performance is relatively constant over all considered
methods. This implies that the ranking among methods
should be largely similar for both groups of subjects. Figure 3
demonstrates that large performance differences are indeed
preserved when moving from intact subjects to amputees. For
instance, the best and worst performing methods are iden-
tical for both groups (i.e., KRLS/mDWT and LDA/RMS).
We observe some disagreements, however, in the central
cluster in Figure 3, where performance differences are less
pronounced (cf. k-NN and LDA with HIST and mDWT
features in Figure 2). In particular, the performance penalty
is larger for k-NN than for the other two methods. The
small performance differences within this central cluster
are however not statistically significant for the group of
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Fig. 3. Average classification accuracy for intact subjects versus that of
amputated subjects for the nine combinations of features and classifiers. The
linear regression with an intercept of 12.59% and a slope of 0.61 obtains
a reasonably good fit of R2 = 0.83.

amputated subjects (sign test, p ≥ 30%) and may therefore
be an artefact caused by the small sample size. Furthermore,
even when considering these accuracies “as-is”, we find a
positive rank correlation1 between both groups of subjects
of τ = 0.70. This rank correlation is in fact found to
be significant (τ -test, p = 1.6h), meaning that results
obtained on intact subjects are indeed statistically correlated
with those of amputees. A similar result can be obtained
using regression analysis (see Figure 3), which estimates
a positive and statistically significant regression coefficient
of 0.61 between both groups (Student’s t-test, p ≤ 1h).
Figure 4 provides additional insight on how performance is
distributed within the subject groups. We observe that the
extrems are much further apart among amputees than among
intact subjects. While performance for one amputee did not
significantly exceed the baseline, the best case performance
for another amputated subject was actually higher than
the median result among intact subjects, regardless of the
employed feature extraction and classification method. It is
obvious that the heterogeneity of amputations (and medical
causes that require amputation) introduces additional vari-
ability as compared to the anatomically more homogeneous
intact control group. For instance, the amputated subject
whose performance did not improve over the baseline was
reported to have 0% remaining forearm length. Medical
aspects of the amputation (e.g., remaining forearm length,
trauma or not, etc.) will therefore have to be considered on
an individual basis, as these are decisive factors that influence
classification performance (see also [9]).

Figure 5 compares the accuracy distribution when us-
ing either sEMG, accelerometry, or a combination of both
modalities (i.e., multi-modal). We observe that performance
for the ACC-only and multi-modal methods is considerably
higher than the sEMG-only counterparts and also more con-
sistent among amputated subjects. Both observations suggest
that accelerometry is indeed less affected by amputation

1Kendall’s τ is a rank correlation coefficient that ranges between 1
(perfect agreement) and −1 (perfect disagreement). The corresponding τ -
test tests the null hypothesis that the quantities are statistically independent.
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Fig. 4. Boxplots of the classification accuracy for intact and amputated
subjects for the baseline (BL) and the nine combinations of features and
classifiers. For the group of intact subjects, each boxplot reports the median,
the first and third quartiles, and the extrema.
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Fig. 5. Boxplots of the classification accuracy for intact and amputated
subjects for the KRLS classifier. Results are reported for the three sEMG
feature types, for the MEAN feature type when using accelerometry,
and finally for the combination of mDWT and MEAN features extracted
respectively from the sEMG and ACC modalities. For the group of intact
subjects, each boxplot reports the median, the first and third quartiles, and
the extrema.

than surface electromyography. The maximum performance
of the multi-modal classifier is nearly identical for intact
and amputated subjects (i.e., 92.1% and 88.9%), which
compares favorably to the sEMG-only case (i.e., 90.0% and
79.8%). However, the most relevant advantage of including
accelerometry is that it increases minimum performance
among amputees from approximately 30% in the sEMG-only
case (i.e., similar to baseline performance) to more than 60%.

IV. CONCLUSIONS

A large number of studies have compared different ap-
proaches to myoelectric control of robotic hands. However,
the majority of these studies is characterized by two problems
that we addressed in this paper. First, most of studies have
compared different approaches to myoelectric control using
solely intact subjects, relying on the unproved assumption
that the performance on intact subjects is representative
for amputees as well. This assumption is not trivial, since
amputation causes changes to the muscular anatomy and

physiology that may affect myoelectric control performance.
Second, usually only electromyography data are used, despite
other sensors (e.g. accelerometers) could be easily included
into a real life prosthesis control system. In this paper we
analyze the mentioned problems by the classification of 40
hand movements in 5 amputated and 40 intact subjects, using
both sEMG and accelerometry data and applying several
different state of the art methods. The number of subjects
can seem small at first sight, but it is not considering the
literature of the field (described in Section I).

Our results indicate that the maximum average classifica-
tion accuracy for 5 amputated subjects is 61.14%, which is
just 15.86% less than intact subjects. This result is obtained
with a KRLS classifier and mDWT features, and it is
very important especially considering the number of classes,
which is very high compared to the literature of the field.
Only one previous study by Atzori et al. [23] addressed
the classification of more than 12 movements in amputated
subjects, but it considered only one amputated subject and
needed therefore a confirmation on more data. It must be
noted also that theoretically the accuracy can be increased
strongly reducing the number of movements.

The comparison of three classification methods combined
with four feature extraction methods reveals a statistically
significant rank correlation between accuracy obtained with
intact subjects and amputated subjects (p = 1.6h). Although
this implies that intact subjects can indeed be used as proxy
measure, one should be aware that (1) the rank correlation
is not necessarily perfect, (2) performance for amputees
is considerably worse than for intact subjects, and (3) the
variability among amputated subjects is higher. It must
be noticed that the classification results are not balanced
according to the movement repetition number.

Accelerometer data are included into the NinaPro
database, and in this work we evaluate also the benefit of
using accelerometry as an additional control modality. Our
results show that accelerometry is less affected by amputation
than surface electromyography, as suggested by a recent
study on intact subjects by Gijsberts and Caputo [12]. Includ-
ing accelerometry yields drastic increases in performance for
intact as well as amputated subjects, while also the variability
among amputated subjects is found to be much smaller.
This indicates that accelerometry prosthetic performance
may easily be improved by inclusion of accelerometers.

In conclusion, the results represent an important step
towards the natural control of dexterous prosthetic hands.
First, they contribute to improve the comprehension of past
and future studies based only on intact subjects, justifying
their use as a proxy measure for amputees in preliminary
analyses. Second, they show that improving the accuracy by
combining sEMG and accelerometry into a standard setup
would bring the results closer to real life natural control
needs, which could strongly improve the quality of life of
hand amputated subjects.
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