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Abstract— Automated motor unit (MU) decomposition 

algorithms of surface electromyogram (EMG) have been 

developed recently.  However, a routine estimate of the 

decomposition accuracy is still lacking.  The objective of this 

preliminary study was to examine the statistics of the inter-spike 

intervals (ISIs) of the identified MUs as a measure of the 

decomposition accuracy, such that the ISI analysis can be used 

as a routine procedure to assess the accuracy of the surface 

identified MU spike timings.  A surface EMG recording and 

decomposition system was used to record EMG signals and 

extract single MU activities from the first dorsal interosseous 

muscle of three healthy individuals.  The estimated ISI statistics 

were cross-validated with decomposed MUs from simultaneous 

intramuscular EMG recordings.  Our preliminary results reveal 

that the distribution of the ISIs, specifically the deviation from 

the Gaussian distribution as represented by secondary peaks at 

the short or long ISIs, can provide information regarding the 

spurious errors and missed firing errors in the decomposition.  

In addition, the variability (coefficient of variation) of the ISIs 

also correlated inversely with the decomposition accuracy.  

These findings show that the ISI statistics can be used to assess 

the spike timing accuracy of the identified MUs from surface 

EMG decomposition algorithms. 
 

I. INTRODUCTION 

Motor unit (MU) firing patterns are typically obtained 
using invasive intramuscular recordings, and the yield of the 
MU is also low.  Recently, noninvasive skin surface EMG 
recordings and automatic MU decomposition techniques have 
been developed [1-5].  These methods allow extractions of a 
large number of simultaneously active MUs in a large force 
range.  Although promising, the validity of these approaches 
cannot be readily assessed routinely. 

Accordingly, the objective of this study was to examine 
the firing statistics of the identified MUs in order to evaluate 
the accuracy of a surface EMG (sEMG) decomposition 
algorithm (dEMG) based on sEMG recordings from a five-pin 
sensor array [5].  The output of the decomposition algorithm 
consists of the firing times and action potential templates of a 
large number of MUs identified from the sEMG signals over a 
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large range of muscle contraction levels.  The validity of this 
decomposition algorithm has previously been assessed using a 
‘reconstruct-and-test’ approach (in which reconstructed EMG 
signals from the real sEMG signals were decomposed and 
compared with the original decomposition results) [5] and a 
‘spike triggered averaging’ approach (in which the action 
potentials of individual MUs were estimated, and the 
consistency of the estimated action potentials were evaluated) 
[6, 7].  However, both validation methods could not identify 
the missed firing errors of the MUs.  A more rigorous 
two-source validation procedure has been performed [8].  In 
this study, the surface and intramuscular EMG signals were 
recorded simultaneously and were then decomposed 
independently using two separate decomposition algorithms.  
Although the two-source validation provides a definite 
assessment of the decomposition accuracy, this procedure 
cannot be performed routinely during sEMG recordings of 
different muscles in different experimental conditions.  
Therefore, an accuracy assessment tool that can be used to 
evaluate the decomposition results on a regular basis is 
necessary to ensure reliable estimate of the MU firing 
properties. 

During steady state muscle contractions, the recruited 
MUs discharge at stable firing rates with ISIs following a 
Gaussian distribution [9], and deviations from this distribution 
can signify potential identification errors.  In MU 
decomposition, there are two types of errors.  First, spurious 
errors (false positives) are the identified action potentials that 
are not present in the real action potential train.  These errors 
can lead to reduced ISIs, which may produce a secondary peak 
at the short ISIs in the ISI distribution.  Second, missed firing 
errors (false negatives) are existed action potentials in the 
sEMG signal that are missed by the decomposition algorithm.  
These errors can lead to large ISIs, which may create a 
secondary peak at the long ISIs in the ISI distribution.  
Therefore, these secondary ISI peaks on either side of the main 
peak can provide information about the nature of the 
identification errors.  In addition, both spurious and missed 
firing errors can increase the variability of the ISIs, which is 
also a sign of potential decomposition errors. 

In this preliminary study, we examined the ISI distribution 
of the decomposed MUs from the sEMG signals, and the ISI 
distribution of MUs from the intramuscular recordings were 
used as the true distribution to cross-validate the estimated ISI 
statistics.  The variability of the ISIs was also calculated.  
Specifically, the coefficient of variation (standard deviation 
normalized by the mean) of the ISIs was correlated with the 
decomposition accuracy.  These measures can serve as 
potential tools to assess the decomposition accuracy of the 
decomposed MUs to ensure that the estimated MU firing 
properties are reliable. 
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II. METHODS 

A.  Subjects 

Three healthy subjects without any neurological disorders 
participated in the study.  For each subject, intramuscular and 
surface EMG activities were recorded simultaneously from 
the first dorsal interosseous (FDI) muscle during the 
abduction/flexion of the index finger.  All subjects gave 
informed consent via the protocols approved by the 
Institutional Review Board of Northwestern University. 

B. Experimental Setup 

Subjects were seated upright in a Biodex chair with their 
arm resting comfortably on a support (Figure 1).  To minimize 
the activity of the unrecorded muscles, their forearm was 
casted and the wrist was fixed with a brace onto a ring mount 
attached to the support.  In doing so, the forearm was also 
completely pronated and the wrist was in neutral position with 
respect to flexion and extension.  The index finger was 
isolated by extending the little, ring, and middle fingers away 
and placed in line with the long axis of the forearm to form a 0 
degree metacarpophalangeal joint angle. The thumb was 
placed at approximately 60 degrees away from the index 
finger.  The proximal phalanx of the index finger was securely 
attached to the six degrees-of-freedom load cell (ATI, Inc., 
Apex, NC).  The abduction and flexion forces from the load 
cell were low-pass filtered at 200 Hz and sampled at 1 kHz. 

The intramuscular EMG (iEMG) was recorded with 

Teflon-coated double-stranded wires (bifilar 50 µm, 

California Fine Wire, Grover Beach, CA). The fine-wire was 

only exposed at the tip for maximal recording selectivity.  The 

wire was then inserted into a 30-gauge hypodermic needle 

and the tip was bent to form a barb.  The bipolar iEMG signals 

were amplified, band-pass filtered from 20 Hz to 20 kHz, and 

sampled at 20 kHz using the Bagnoli sEMG system (Delsys, 

Inc., Boston, MA). 

 

 

Fig. 1: Experimental setup. A surface sensor array and a fine-wire electrode 

were used to record EMG activities of the FDI muscle.  Isometric finger force 

was recorded using a load cell. 
 

The superficial layer of the skin was properly cleaned 

using abrasive alcohol pads and adhesive tape.  After the 

fine-wire had been placed in the muscle, the surface sensor 

array was placed above the FDI muscle close to the fine-wire 

entry point. 

The sEMG was recorded with the surface sensor array 

(Delsys, Inc., Boston, MA).  The surface sensor array has 5 

cylindrical pins with 5mm diameter arranged in a rectangle 

with one pin in the center.  Pairwise differentiations of the 

pins produce four channels of sEMG.  The sEMG signals 

were then amplified and filtered from 20 Hz to 2 kHz and 

sampled at 20 kHz using the same Bagnoli sEMG system 

used for the fine-wire recording. 

C. Procedures 

The subjects were asked to follow an isometric force 

trajectory of trapezoidal shape using abduction and/or flexion 

of their index finger.  The trapezoidal force trajectory was 

composed of a 5-second resting period, a slow ramp-up 

segment, a 12-second steady force period, a short ramp-down 

segment, and a 3-second resting period.  To ensure reliable 

decomposition of the iEMG using EMGlab [10], the 

steady-state force was limited to low levels (approximately 5 

to 15% of maximum force), determined by the degree of 

discriminable MU patterns in the iEMG signal.  The subjects 

were asked to hold a force level when one MUAP train was 

visible on iEMG. This force level was then used as the lower 

bound for force.  They were then asked to increase the 

steady-hold force until dense interference patterns had been 

recorded in the iEMG such that the experimenter could not 

visually identify discriminable motor units. The upper bound 

for force was set to be just below this level.  Using this 

approach, the constant-hold force (abduction and/or flexion) 

ranged from 0.2 to 8 N across the subjects. 

D. Data Analysis 

sEMG signals were decomposed using the dEMG 
decomposition algorithm (version 1.0.0.31) [5] to obtain firing 
times of each MU and four MU action potential templates 
corresponding to the four channels of raw sEMG.  The iEMG 
signals were decomposed using EMGlab (version 1.03) [10]. 
The raw iEMG was passed through EMGlab to obtain a 
number of automatically decomposed MUs, which were then 
manually inspected for correctness.  For maximum accuracy, 
MUs with multiple superpositioning in the iEMG signal, 
which prevented the editor from correctly identifying the MU 
firing events, were discarded. 

In order to identify MUs common to both sEMG and 
iEMG signal, first, spike triggered averaging was performed 
on the iEMG signal using the firing time output of the 
decomposed sEMG MUs.  When the averaged waveform 
displayed a clear MUAP above the baseline noise, it is 
possible that the MU was recorded on both the iEMG and 
sEMG.  Second, the raw sEMG and raw iEMG signals were 
aligned to visually identify time locked MUAPs especially 
during the recruitment and de-recruitment stages (up-ramp 
and down-ramp portion of the trial).  After these two steps 
were used to qualitatively find MUs common to both sEMG 
and iEMG, for each MU, an event correlation histogram 
between the spike trains from iEMG and sEMG was 
constructed to confirm that the MU was truly common 
between the two recordings.  Because each decomposition 
method has a different placing method of the time of a firing 
event, and because there may be a difference in the distance 
between the muscle fiber and the two electrodes, the 
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decomposed spike timings of surface and iEMG signals were 
shifted to have maximum agreement. 

For each identified common MU, the inter-spike intervals 

(ISIs) between the firings, the mean firing rates (MFRs) were 

calculated from both sEMG and iEMG.  Then, ISIs from all 

MUs within a single trial were pooled together to examine the 

accuracy of the decomposition system.  First, ISI histogram of 

all MUs within a single trial was constructed for both iEMG 

and sEMG.  The ISI histograms were overlaid on top of each 

other for comparison.  In addition, the accuracy of the 

identified surface MU spike trains was calculated as: 

 

          
        

                
 

 

where NCorrect is the number of correctly identified firings (i.e., 

the firings that were identified within ± 5ms agreement both 

on the sEMG and iEMG), NFP is the number of false positives, 

and NFN is the number of false negatives.  A false positive is 

defined as a sEMG firing that did not match any firings within 

± 5ms identified from the iEMG signal, or a sEMG firing that 

is further away from the iEMG firing, when multiple surface 

firings have been identified within ± 5ms of the iEMG firing.  

A false negative is defined as an iEMG firing that did not 

match any firings within ± 5ms from the sEMG signal.   

After the common MUs have been identified, the ISI 

distribution was constructed and compared between the two 

sources.  Moreover, the correlation between the accuracy of 

sEMG firing output and the CV of ISIs of surface identified 

MUs was studied to examine if CV of ISIs is a good indicator 

of the decomposition accuracy.  Pearson’s correlation 

coefficient between the CV of ISI and decomposition 

accuracy was calculated from all of the MUs from all subjects 

pooled together.  In addition, a linear fit was conducted to 

quantify the general trend. 

III. RESULTS 

From the three subjects, a total of 54 trials were analyzed, 

and a total of 67 common MUs were examined.  The number 

of trials, the number of MUs, the minimum and maximum 

accuracy, and the mean accuracy for each subject are 

summarized in Table I. 

TABLE I.  MU DECOMPOSITION ACCURACY 

Subjects Trials MUs Min Acc Max Acc Avg Acc 

1 19 24 76.25% 100% 93.82% 

2 15 21 77.78% 100% 93.77% 

3 20 22 82.19% 100% 98.22% 

Note: Trials: number of trials analyzed.  MU: number of MUs identified.  Min/Max/Avg Acc: 

Minimum/Maximum/Average Accuracy of MU spike identification of each subject. 

After accuracy of each MU has been computed, the ISI 

were calculated and a histogram of ISI was created for each of 

the MU.  The visual inspection of histograms showed that the 

distribution of ISI generally follows a Gaussian distribution 

(Fig. 2).  For MUs with high accuracy, the ISI histogram of 

the sEMG MUs (blue traces) matched the ISI histogram of the 

iEMG MUs (red traces) very closely.  However, the ISI 

histogram of the sEMG MUs showed deviations for the MUs 

with lower decomposition accuracy.  If there were many false 

positives, the distribution of ISI had a longer tail or a 

secondary peak on the left side of the main peak of the 

distribution, due to the shorter ISI around the false positive 

firing events.  On the other hand, if there were many false 

negatives, the distribution of ISI had a longer tail or a 

secondary peak on the right side of the main peak of the 

distribution due to the longer ISI resulting from missed firing 

events. 

Fig. 2: Distribution of ISI for sample MUs from all three subjects.  Left panels 
show the overlapped distribution of ISI between iEMG and sEMG when the 
accuracy was 100%.  Right panels show the visible differences between the 
two distributions when the accuracy was relatively low.  Acc represents 
accuracy; ‘F+’ represents false positives; and ‘F-’ represents false negatives. 
In the legend, ‘FW’ represents fine-wire; and ‘SA’ represents surface array. 

 

Fig. 3: CV as a function of accuracy shows a negative correlation (Pearson’s 
correlation coefficient: -0.65, p<0.001). 
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The CV of ISI was also calculated as the index of the 

variability or dispersion of the ISI.  Then, the CV was 

correlated with the decomposition accuracy to examine the 

possible relation between the two variables (Fig. 3).  

Pearson’s correlation coefficient for the relationship was 

-0.65 (p<0.001).  These results confirm that the 

decomposition errors can lead to increased firing variability. 

IV. DISCUSSION 

This preliminary study examines the distribution and 
variability of ISIs of decomposed MUs from sEMG signals, in 
order to assess whether ISI statistics can be used to evaluate 
the decomposition accuracy of the identified MUs.  When 
cross-validated with simultaneously recorded intramuscular 
EMG signals, the analyses of ISI statistics can provide 
information regarding the MU decomposition accuracy in 
steady state muscle contractions, during which the ISI of MU 
firings follow a Gaussian distribution [7, 9], and the 
intramuscular MU firing ISIs also followed a Gaussian 
distribution in the current study as shown in Figure 2.  
Therefore, a deviation of the ISI distribution from a Gaussian 
distribution can signify decomposition errors.  A long tail or a 
secondary peak in short ISIs is a sign of spurious errors, and a 
long tail or a secondary peak in long ISIs is a sign of missed 
firing errors.  Additionally, the decomposition errors also lead 
to increased variability of firings during steady state 
contractions, and the CV of ISIs correlated inversely with the 
decomposition accuracy.  Our preliminary results show that 
the ISI statistics can be used as an assessment tool to routinely 
evaluate the spike timing accuracy of decomposed MUs from 
sEMG signals. 

In this study, intramuscular EMG recordings and 
decomposition were used to verify the ISI statistics so as to 
establish the true ISI distributions and the actual 
decomposition accuracy.  It should be noted that intramuscular 
recordings are not necessary during routine ISI analysis.  
Actually, it is not realistic to assess the decomposition 
accuracy using the two-source method (where only a 
sub-sample of the decomposed MUs were evaluated), and the 
analyses of ISI statistics only from sEMG decomposition 
results would provide an efficient way to evaluate the firing 
accuracy of all the decomposed MUs.  Clearly, further 
investigations are necessary to quantify the ISI distribution 
and examine higher-order moments (such as skewness and 
kurtosis of the distribution) as well as fit the distribution with a 
multi-modal Gaussian function, in order to better predict the 
decomposition errors. 

The muscle contractions in the current study were 
constrained at low levels, largely because the intramuscular 
recordings and decomposition only work effectively at low 
levels of muscle contractions.  This can limit the analysis of 
the ISI distribution.  As shown in Figure 3, two MUs had CV 
of ISI around 0.5, and the decomposition accuracy was still 
acceptable (around 93%).  Such high CV values in real ISIs 
are due to the fact that these MUs were discharging at their 
recruitment rate, which may show a large degree of 
fluctuations [11].  Therefore, the ISI analysis may have false 
alarms that can eliminate the MUs with very low firing rates. 

Overall, the analyses of ISI statistics can provide 

information regarding the decomposition accuracy and the 

nature of the error of a sEMG decomposition system.  These 

analyses can be used routinely to assess the system 

performance in different experimental conditions.  Although 

the current study was based on a particular decomposition 

algorithm [5], these types of analysis can be readily applied to 

other decomposition algorithms, when the MU discharge rate 

was stable or the level of muscle contraction was steady.   
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