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Abstract— Surface electromyographic (EMG) signals have of-
ten been used in estimating upper and lower limb dynamics and
kinematics for the purpose of controlling robotic devices such as
robot prosthesis and finger exoskeletons. However, in estimating
multiple and a high number of degrees-of-freedom (DOF)
kinematics from EMG, output DOFs are usually estimated
independently. In this study, we estimate finger joint kinematics
from EMG signals using a multi-output convolved Gaussian
Process (Multi-output Full GP) that considers dependencies
between outputs. We show that estimation of finger joints from
muscle activation inputs can be improved by using a regression
model that considers inherent coupling or correlation within
the hand and finger joints. We also provide a comparison of
estimation performance between different regression methods,
such as Artificial Neural Networks (ANN) which is used by
many of the related studies. We show that using a multi-output
GP gives improved estimation compared to multi-output ANN
and even dedicated or independent regression models.

I. INTRODUCTION

Recently, more and more advanced multifingered, high
degree-of-freedom (DOF) robotic hands are being developed.
More particularly, research in myoelectric control has led to
the development of robot prosthetic devices and exoskeletons
that are able to mimic the function of the human hand and
can do highly dexterous tasks. However, current myoelectric-
based control schemes have been limited to on-off binary
control, pattern recognition-based sequential control and
proportional control of a few DOFs [1].

While many have mapped surface EMG signals to upper
limb kinematics and dynamics, few have focused on mapping
to fine finger joint actuations. This is because of the many
muscles, both extrinsic and intrinsic, involved in the control
of complex coordination and high DOFs present in the
hand. Many studies have modeled the human hand as a
complex and highly articulated mechanism having more than
20 DOFs, considering all fingers and the wrist [2]. However,
many studies have shown that extrinsic muscles in the fore-
arm have enough information to estimate finger kinematics
(e.g. joint angles) [3][4] or dynamics (e.g. pinch force). It has
also been suggested that the effective dimensionality of hand
postures can be represented in a lower dimensional space [5]
possibly due to the existence of synergies, biomechanical
coupling and limitations in neural control.
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Jiang et al. have shown the feasibility of doing online
simultaneous and proportional myoelectric control of the
wrist using EMG signals taken from both healthy sub-
jects and amputees [1]. On relating to finger movements,
Smith et al. were able to asynchronously decode individual
metacarpophalangeal (MCP) joint angles of all five fingers
using an artificial neural network (ANN) [4]. Hioki et al.
estimated the five proximal interphalangeal (PIP) finger joints
and considered some dynamical relationship between the
EMG and finger actuation by adopting time delay factors
and feedback stream into a recurrent ANN [6]. As in our
previous study, we also estimated 15 finger joint DOFs
simultaneously using ANN [7]. However, in all the previous
studies mentioned, all the output joint kinematics were
estimated either independently or whose relationship were
heuristically considered through the interaction of the hidden
neurons. Not to mention that in almost all the studies related
to continuous kinematics estimation from EMG, regression
using ANN with different configurations seems to be the
default nonlinear estimator used [1,3-4,6-7].

However, highly dexterous hand and finger movements are
done in a coordinated fashion. It has been shown in previous
studies that finger joints in the hand are highly correlated.
By using principal component analysis, Ingram et al. found
that the actual dimension in hand movements was much less
than the total DOFs available [8]. Driven by the existence of
highly correlated finger joints, our work aims to improve
current finger joint kinematics estimation from EMG by
implicitly considering correlations between multiple outputs.
In this study, we estimate finger joint kinematics from muscle
activation inputs using a full-covariance dependent output
Gaussian Process (GP) for modelling correlated outputs. A
convolution process and a shared latent function framework
approach is used to establish dependencies between output
variables. We also compare accuracies of mapping EMG to
the corresponding multi-DOF hand/finger kinematics using
different regression models, namely, a dedicated or indepen-
dent NN for each DOF, a multi-output NN, a dedicated or
independent GP and a multi-output full GP.

II. METHOD

A. Subjects

Five participants (3 Male, 2 Female, aged 23-31 years
old), who gave informed consent, volunteered in this study.
All the subjects were healthy and had no known physical
impairments. Except for two of the participants, all the rest
had no previous experience with myoelectric control nor with
any 3D motion capture experiments.
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Fig. 1. The surface EMG electrodes and the reflective markers are placed
on the target muscles in the forearm and on the hand, respectively.

B. EMG Recordings

Eight bipolar active-type Ag-AgCl electrodes from Ambu,
with inter-electrode distance of 20 mm were placed on
eight extrinsic muscles in the forearm that are known to
contribute to wrist and finger movements (Figure 1). These
muscles are the Abductor Pollicis Longus (APL), Flexor
Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS),
Flexor Digitorum Profundus (FDP), Extensor Digitorium
(ED), Extensor Indices (EI), Extensor Carpi Ulnaris (ECU),
and Extensor Carpi Radialis (ECR). These target muscles
were mostly found by palpation and chosen from known
anatomical landmarks. A single electrode was also placed on
the subject’s olecranon to serve as ground. The EMG signals
were measured using a compact BA1104 pre-amplifier with
active-type (Ag/AgCl) electrodes having interelectrode dis-
tance of 20 mm, and a telemetry unit TU-4 (Digitex Lab. Co.
Ltd). The hardware provided a high frequency filter of 1 kHz
during the EMG data acquisition process. The EMG signals
were sampled at 2 kHz, and input to an A/D converter.

C. Finger Kinematics

Twenty-two small reflective markers (6 mm diameter)
were attached on the subject’s hand, with a marker located on
each joint of the finger and 3 in the wrist area. While finger
movements were made, the hand and finger motions were
recorded simultaneously using a MAC3D motion capture
system (Motion Analysis Corp.). The marker trajectories
were sampled at 200 Hz with units in millimeters. The
joint kinematics, namely the MCP, PIP and DIP finger
joints, were then calculated from the 3D positions of each
marker. Because the thumb does not have a DIP joint,
the carpometacarpal (CMC) joint was considered before the
MCP joint. All in all 15 DOFs were computed.

D. Experimental Protocol

Each participant was comfortably seated with their hands
positioned on a table centered on the motion capture area.
They were tasked to do the following tasks: (1) move one
finger at a time periodically, (2) move all five fingers simul-
taneously and (3) move any finger freely in any direction.
All finger movements were limited to flexion and extension
movements. Irregular periodic movements and different fin-
ger combinations were encouraged on the third task. The first
task consisted of 5 sets of movements, one for each finger.
While the second and third tasks consisted of 1 set each. Each
set consisted of 5 trials lasting 20 seconds each. All the trials
were sequentially done and the participants were allowed to

rest anytime throughout the experiment. The subjects were
also instructed to, as much as possible, maintain the position
of the wrist and the whole arm in a fixed position.

E. EMG Processing

The raw EMG signals were first rectified, normalized,
lowpass filtered (with 4 Hz cut-off frequency, zero-phase
2nd-order Butterworth filter), and downsampled to match
the frequency of the motion data. We used an EMG-to-
Muscle Activation model to transform the preprocessed EMG
to a form that considers some muscle activation dynamics.
It is known that there occurs some time delay, known as
electromechanical delay (EMD), between the onset of the
EMG and the exerting tension in the muscles. To learn a
suitable filtered signal that considers EMD and nonlinearity
between EMG and muscle activations, we use an EMG-
to-Muscle Activation model that transforms the EMG to
muscle activation (force). Buchanan et al. created a second-
order filter that works efficiently to model EMG and muscle
activation [9]. In this study, we employed their filter:

uj(t) = αej(t− d)− β1uj(t− 1)− β2uj(t− 2) (1)

vj(t) =
eAjuj(t) − 1

eAj − 1
, (2)

where ej is the pre-processed EMG and vj is the muscle
activation of muscle j at time t. Parameters α, β1, β2
are recursive coefficients, d is the EMD parameter and Aj
introduces nonlinearity between EMG and muscle activation.
Filter stability is guaranteed by putting on constraints:

β1 = γ1 + γ2 (3)
β2 = γ1 · γ2 (4)
|γ1| < 1, |γ2| < 1 (5)
α− β1 − β2 = 1. (6)

Aj is constrained between −3 (highly exponential) and 0.
We used the muscle activation as the chosen input feature

because it considers muscle dynamics and have been shown
to perform better than time-domain (TD) features or filtered
EMG signals (without delay considerations) [7]. Parameters
of the muscle activation model were obtained using Matlab’s
Optimization Toolbox and by minimizing the mean-square-
error between the measured and estimated finger kinematics.

F. Multi-output Regression

Using artificial neural networks has been the common
choice by many of the previous studies because computation
is fast and inexpensive. However, this choice is heuristic,
gives a black-box approach, and requires a lot of training
data to effectively model complex nonlinear functions. In
this study, we chose to use a Bayesian inference framework
in the form of a convolved multi-output Gaussian Process
that considers correlation between outputs [10]. Let X ∈
Rm×N be the N -channel muscle activation input vectors,
with the multi-output finger DOF output Y ∈ Rm×Q. Given
the convolution formalism, where a convolution process
between a smoothing kernel and latent function is done in
order to establish dependencies between output. Alvarez and
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Finger Joint Correlation Matrix: Subject 5
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Fig. 2. A representative correlation matrix from Subject 5 shows the
pairwise correlation between all finger joints.

Lawrence showed a full Gaussian Process model over the set
of outputs and defined the likelihood of the model as

p(y|X,φ) = N (0,Kf,f + Σ), (7)

where φ is the set of parameters of the covariance matrix, Σ
is a diagonal matrix with elements {σ2

q}
Q
q=1 from indepen-

dent Gaussian noise processes and Kf,f ∈ RQN×QN is the
covariance matrix relating all data points at all outputs with
elements taken from the correlation between outputs

cov[fq(x), fs(x
′)] =

R∑
r=1

∫ ∞
−∞

kqr(x− z)×∫ ∞
−∞

ksr(x
′ − z′)kurur (z − z′)dz′dz (8)

where kqr and ksr are the kernel smoothing functions at
different output functions f , and kurur is the covariance
function for the latent function ur(z).

The predictive distribution for new input X∗ is given by

p(y∗|y,X,X∗, φ) =N (Kf∗,f (Kf,f + Σ)−1y,

Kf∗,f (Kf,f + Σ)−1Kf,f∗ + Σ) (9)

Because learning from the log-likelihood involves the
computation of the inverse of Kf,f + Σ whose complexity
grows as the size input or output matrix increases. Rather
than using the sparse approximation scheme proposed in the
original paper [10], we reduced the full covariance matrix
by using only a subset of the full training data [11]. A
fixed interval sampling was used to reduce the number
of samples and this drastically improved hyperparameter
learning and the training time needed. In this study, a Matlab
implementation of the multi-output Full GP [10] was used.

We compared the estimation performance of using the
multi-output Full GP compared to the standard baseline of
using a 3-layer feedforward multi-output neural network. For
the full GP, we used a squared exponential with automatic
relevance determination (SEard) covariance or kernel func-
tion given by kurur (x, x′) = exp[− 1

2 (x− x′)>Lr(x− x′)],
where Lr is a diagonal matrix with different length parame-
ters along each dimension. The smoothing kernel also had the

same form, kqr(τ) =
Sqr|Lqr|

1/2

(2π)
1
2

exp[− 1
2 (τ)>Lqr(τ)], where

Sqr ∈ R and Lqr is a symmetric positive definite matrix. The
GP hyperparameters and NN neuron weight parameters were
learned by minimizing the negative marginal log likelihood
and the mean-square-error (MSE), respectively. A scaled

−5

0

5

M
C

P

−5

0

5

P
IP

0 5 10 15 20 25 30 35 40
−5

0

5

Time [s]

D
IP

 

 

Full GP−Pred Variance
Actual Joint Angle
NN−Pred Joint Angle
Full GP−Pred Joint Angle

Fig. 3. One representative data from an index finger flexion and extension
task. The estimation performance along each finger joint (MCP, PIP and
DIP) joint is shown.

conjugate gradient (SCG) algorithm was used in learning the
parameters. The maximum iteration was set to 500 and for
the neural network the hidden layer was composed of 250
hidden neurons with tan-sigmoidal activation functions.

Eighty percent of the data from each task set were con-
catenated together to form a larger training set while the
remaining twenty percent, also concatenated together were
used for testing. The training data were standardized to have
zero mean and unit variance on each dimension while the test
data where standardized to have a mean around the training
mean. A five-fold cross validation was also done.

To measure the overall estimation performance of the re-
gression method, we measured the accuracy of the method’s
predictions on an unseen test data using the Standardized
Mean Squared Error (SMSE) and the Pearson’s Correlation
Coefficient (R) performance indices. The SMSE is the mean
squared error normalized by the MSE of a dumb predictor
that always predicts the mean of the training set [11].

Rather than getting the full multi-output model of all 15
finger DOFs, which also has some scalability issues with
using the GP, we make use of some prior knowledge and
assume that correlations in finger joints exists only in some
joints. We validate this in the next section. In this study,
we simplify our GP model and only consider multi-output
within each finger (3 DOF) and within adjacent MCP finger
joints (4 DOF) without the thumb.

III. RESULTS AND DISCUSSION

Figure 2 shows the correlation matrix between the actual
measured finger joint angles of Subject 5 across all set of
finger movements concatenated together. It can be seen in the
figure that there is high correlation between joints within the
same finger (0.5804±0.3512) and between joints in adjacent
fingers (0.5206 ± 0.3060). This result shows the existence
of coupled finger joints, such as the MCP joints within
adjacent finger and the PIP and DIP joints within the same
finger. It is interesting to see that among all the fingers, the
thumb is the most independent and has the least correlation
with other fingers. When getting the mean correlation matrix
across all 5 subjects, almost all the paired joints showed
significant correlations (P < 0.05) except for the paired
joints, litMCP-indPIP and litDIP-thMCP (P = 0.07 and
P = 0.19, respectively).

The different regression models were trained using two
configurations, one training for 3 output joints in each
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Fig. 4. Error Learning Curve comparison between different configurations
of the NN and GP regression models.

individual finger, and another across all 4 MCP joints of the
adjacent fingers. Figure 3 shows a representative estimation
result taken from an index finger flexion and extension test
trial. In this representative data, the NN was fully trained
with all the training samples available, while the full-GP
was trained using only 2048 induced samples obtained from
fixed-interval sampling. As shown in this test trial, full-GP
(Rmcp = 0.93, Rpip = 0.59, Rdip = 0.54) that considers
correlation between outputs performed better than multi-
output NN (Rmcp = 0.83, Rpip = 0.52, Rdip = 0.12).

We also plotted the error learning curve involving the
four regression models that we compared. Figure 4 shows
the mean standardized mean-square-error (SMSE) of the
predicted and measured finger joint when the models were
trained using various number of samples across all subjects.
In can be shown in this figure that the use of GP regression
gives significant reduction in error given that only a few
training samples are used. This shows that we can have
shorter training data collection periods yet still obtain rel-
atively good estimation performance as GP is shown to be
able to handle missing data more readily.

In figure 5, the overall estimation performance using
different regression models across different finger output
configurations are shown. In the case of estimating the joint
kinematics within each individual finger, multi-output GP
significantly outperformed (P < 0.05) the independent NN,
multi-output NN and the independent GP model. In this
individual finger configuration, the mean across the 3 DOF in
each finger and across all fingers were obtained. Compared
to using the neural network, estimation even for the PIP
and DIP angles improved slightly when compared with the
independent GP. Creating an independent GP model for each
DOF gives only a slightly lower performance compared to
the multi-output GP. The latter model however considers
correlations between outputs which gives a more natural
model that reflects more closely the correlations between
finger joints, rather than having separate models for each
DOF. In the case of the adjacent fingers, where we considered
only the 4 finger MCP joints, no significant difference
(P > 0.05) was found between the independent GP model
compared to the independent NN model. The multi-output
GP, however, consistently showed improved estimation per-
formance compared to using any NN configuration and a
slight improvement compared to using an independent GP.
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Fig. 5. Comparison of the SMSE between different regression models using
the number of training samples that gave the best estimation performance.

IV. CONCLUSION

This study presents a solution on how complex, multi-DOF
and correlated finger joint kinematics can be estimated from
EMG or muscle activation inputs. We have systematically
compared different regression methods, such as those con-
ventionally used by many related studies, and those that do
not consider any existing relationship between joint kinemat-
ics. We have shown that using multi-output GP or in general
GP regression method gives better estimation performance
compared to using neural networks, even when training data
is few. To truly validate the usability of our system, future
work would include investigating motor coordination and
muscle activation patterns involved in doing more coordi-
nated, skillful and activities of daily living (ADL) hand tasks.
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