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Abstract— With the advent of inexpensive storage, pervasive
networking, and wireless devices, it is now possible to store
a large proportion of the medical data that is collected in
the intensive care unit (ICU). These data sets can be used
as valuable resources for developing and validating predictive
analytics. In this report, we focus on the problem of predic-
tion of mortality from respiratory distress among long-term
mechanically ventilated patients using data from the publicly-
available MIMIC-II database. Rather than only reporting p-
values for univariate or multivariate regression, as in previous
work, we seek to generate sparsest possible model that will
predict mortality. We find that the presence of severe sepsis
is highly associated with mortality. We also find that variables
related to respiration rate have more predictive accuracy than
variables related to oxygenation status. Ultimately, we have
developed a model which predicts mortality from respiratory
distress in the ICU with a cross-validated area-under-the-
curve (AUC) of approximately 0.74. Four methodologies are
utilized for model dimensionality-reduction: univariate logistic
regression, multivariate logistic regression, decision trees, and
penalized logistic regression.

I. INTRODUCTION

The term “acute respiratory distress syndrome”, or ARDS,
has been critized as being somewhat lacking in objective
validity and predictive accuracy [?]. The original defini-
tion was promulgated by the American-European Consensus
Conference (AECC) in 1994 [?]. ARDS was at that time
defined as a disorder with acute onset, poor oxygenation as
evidenced by an arterial PaO2/FiO» ratio of less than 200 mm
Hg, the presence of bilateral infiltrates as seen on a chest
radiograph, and pulmonary artery wedge pressure of less
than 18 mm Hg, with no evidence of left atrial hypertension.
The definition was recently revised, in 2012, with many of
the limitations of the original AECC definition addressed
[?]. In addition to the original oxygenation variable, several
other variables were added, namely Cgg, the respiratory
system compliance, and the positive end-expiratory pressure
(PEEP) applied by the artificial respirator to maintain airway
clearance. However, even the revised definition only resulted
in an area under the receiver operating curve of 0.577 for
prediction of mortality [?].

This report will focus on the prediction of mortality due
to respiratory distress in ICU patients ventilated for longer
than 48 hours. More specifically, we utilize information from
the first 24 hours after the onset of mechanical ventilation to
predict mortality. We objectively rank the available parame-
ters and develop predictive models of mortality in an entirely
data-driven manner, with the emphasis of the investigations
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being on the selection of the most relevant subset of the
moderately high-dimensional feature set that is sufficient to
predict the outcome.

This work makes use of MIMIC-II [?], a large comprehen-
sive database of ICU records collected over a period of years
at a Beth Isracl Deaconess Hospital, a tertiary-care hospital
affiliated with Harvard Medical School, and post-processed
and de-identified by researchers at the Massachusetts Insti-
tute of Technology (MIT). Our work in this report in many
ways follows the lead of research conducted by Jia [?] at MIT
in 2007. We have extended Jia’s investigations to the realm
of machine learning, looking at the prediction of mortality
from parameters measured in the initial stages of mechanical
ventilation.

II. THE PREDICTION PROBLEM

The problem that we have set for ourselves is, given
knowledge of the patient and ventilator state in the first 24
hours of mechanical ventilation, can we predict mortality ?

Even though we have a large amount of data with which
to work, we also have a relatively large number of potential
features, and it is necessary to intelligently select those
features which are most informative, as, when the number
of features grows, correlations will tend to appear between
variables by chance alone.

A. Methodology

We began by parsing all patient data records within the
MIMIC-II ICU database. Each ICU admission was regarded
as its own independent event and death during this admission
was defined by the reported date of death falling between
between the reported start and end dates of the admission. As
in the work by Jia, we ruled-out hospital admissions where
the ICD-9 code for congestive heart failure was present. We
further required a continuous mechanical ventilation time of
48 hours or greater and discarded records not containing at
least one instance of each variable utilized in the classifica-
tion. Ultimately, we were left with 1054 ICU admissions. Of
these, there were 182 ICU admissions leading to mortality.
Respiratory-distress-related mortality was defined as an ICU
admission leading to mortality where the final PaO2/FiO,
ratio was less than 200 mm Hg. The number of admissions
with the ICD-9 code for severe sepsis was 119, and the
number with the ICD-9 code for ARDS was 258.

B. Classtfication approaches

In what follows, we describe quantitative classification
results using a number of classification and feature-selection
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approaches, namely: univariate logistic regression, multivari-
ate logistic regression, decision trees, and penalized logistic
regression. We have chosen these approaches mainly because
they produce classifiers which are in some sense “explain-
able”.

All of the data analysis was performed using the R lan-
guage [?]. The univariate and multivariate logistic regression
approaches were implemented using the R “glm” package.
The decision tree model was implemented using the R
“party” package [?], and the penalized logistic regression
approach utilized the R “penalized” package [?]. Analysis
of receiver operating characteristic (ROC) curves was per-
formed using the R “ROCR” package [?].

1) Univariate logistic regression: In the first instance, we
utilized univariate logistic regression to determine which of
the measured parameters were correlated with the outcome to
the level of statistical significance, defined here as a p-value
of 0.05 or below.

In table I, we show the results of univariate logistic regres-
sion of respiratory-distress-related mortality vs. the patient’s
state in the first 24 hours after initiation of mechanical
ventilation. For each parameter, we display the standardized
logistic regression coefficient (increase/decrease in risk vs.
number of standard deviations from the mean) and the p-
value. Additionally, we generated univariate classifiers for
each parameter and reported the area under the receiver op-
erating characteristics (ROC) curve for each of the classifiers
using five-fold cross validation.

2) Multivariate logistic regression: We next turn our
attention to multivariate logistic regression, first generating
a model using all of the features simultaneously. This model
achieved a cross-validated AUC of approximately 0.71. For
this model, relatively few parameters achieved a signifi-
cance level of 0.05. These parameters were, specifically: the
presence of the ICD-9 code for sepsis, with a very high
significance level and a coefficient value of 1.56, the age
at admission, the minute volume in the second 12 hours
of mechanical ventilation, and the respiration rate divided
by the tidal volume in the second 12 hours of mechanical
ventilation.

We then built a reduced-feature logistic regression model
using only these four parameters, reasoning that the addi-
tional non-statistically-significant features were serving only
as confounding factors. This model achieved an improved
AUC of 0.74 The p-values and coefficients for the reduced-
feature model are given in Table II. We see that the three
non-binary variables are assigned roughly equal standardized
weights.

3) Decision Trees: An alternative approach to feature-
selection involves the use of decision trees [?], [?]. In the
most common implementation of the decision tree, hard
(typically binary) decisions are made at each node based on
only a single variable. We have chosen the recursive splitting
criterion of only allowing splits which achieve a significance
level of 0.05. Fig. 1 shows the generated decision tree with
the specified splitting rule. For the decision tree model, the
cross-validated AUC was approximately 0.68, though with a
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Fig. 1. Decision tree for prediction of respiratory-distress-related mortality.

higher variance than the logistic regression model, and the
95% CI was 0.68 +/- 0.035. Thus, the decision tree somewhat
underperformed the multivariate logistic regression model.

The decision tree utilized two of the four parameters cho-
sen by the multivariate logistic regression approach, namely
the presence of the ICD-9 code for severe sepsis and the
respiration rate divided by the tidal volume.

4) Penalized Logistic Regression: An interesting approach
to feature-selection and solving the problem of over-fitting
involves the addition of regularization functions to the
functions being optimized by the logistic regression. Early
work on penalized logistic regression utilized an l» penalty
function, but somewhat more recently an /; penalty function,
the “lasso” [?], has been introduced to encourage “sparsity”
of the coefficient set.

An appealing aspect of the penalized regression method
with an [ penalty is that we can visualize the relative values
of the features by displaying their estimated standardized
coefficient values as the [; regularization parameter varies.

We optimize the /; and l» regularization parameters by
a “coordinate-descent” method, varying one parameter at a
time, with the goal of maximizing the cross-validated log-
likelihood. The regularization paths for all parameters are
visualized in Fig. 2. We see that, in general, the presence of
the ICD-9 code for severe sepsis is most highly predictive of
respiratory-distress-related mortality. However, a number of
other parameters, such as the initial SOFA score, persist over
a greater range of regularization parameters. The estimated
coefficients for the model utilizing the optimal values of the
regularization parameters are given in Table III. The mean
cross-validated AUC was 0.702, with a 95% CI of 0.037.

III. CONCLUSION

There has been debate in the clinical community whether
the term “ARDS” has sufficient clinical validity. In our data-
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TABLE I

UNIVARIATE REGRESSION OF RESPIRATORY-DISTRESS-RELATED MORTALITY

Parameter Description Coefficient | p-value Cross-validated AUC
Subject male ? Was the subject male -0.135 0.551 0.52
ICU Admission Admission number -0.18 0.532 0.51
Admission age Age at admission 0.154 0.125 0.55
Initial weight Weight at admission -0.17 0.164 0.54
Days ventilated Number of days ventilated 0.11 0.248 0.59
Initial SOFA SOFA score at admission 0.62 4.56e-8%* 0.66
Initial SAPSI SAPS-I score at admission 0.44 8.89e-5% 0.61
FiO3 12 hr 1 FiO2 mean in first 12 hours 0.32 0.0027%* 0.59
FiO2 12 hr 2 FiO2 mean in second 12 hours 0.37 9.54e-5% 0.60
severe sepsis ICD-9 code for severe sepsis present ? 1.68 4.77e-11*% | 0.61
ARDS ICD-9 code for ARDS present ? 0.61 0.01* 0.56
V: 12 hr 1 V: mean in first 12 hours -0.26 0.0254* 0.58
V¢ 12 hr 2 V¢ mean in second 12 hours -0.23 0.08 0.57
RR 12 hr 1 Respiration rate mean in first 12 hours 0.42 3.2e-5% 0.64
RR 12 hr 2 Respiration rate mean in second 12 hours 0.56 4.17e-8% 0.68
PIP 12 hr 1 Peak inspiratory pressure mean in first 12 hours 0.19 0.073 0.55
PIP 12 hr 2 Peak inspiratory pressure mean in second 12 hours 0.34 9.6e-4* 0.58
Minvol 12 hr 1 Minute volume mean in first 12 hours 0.26 0.0095* 0.59
Minvol 12 hr 2 Minute volume mean in second 12 hours 0.41 3.05e-5%* 0.62
HR 12 hr 1 Heart rate mean in first 12 hours 0.11 0.30 0.51
HR 12 hr 2 Heart rate mean in second 12 hours 0.02 0.88 0.43
PEEP 12 hr 1 Positive End-Expiratory Pressure mean in first 12 hours 0.24 0.007* 0.59
PEEP 12 hr 2 Positive End-Expiratory Pressure mean in second 12 hours | 0.35 7.8e-5% 0.61
SaO2 12 hr 1 arterial oxygen saturation mean, first 12 hours -0.09 0.224 0.58
SaOs 12 hr 2 arterial oxygen saturation mean, second 12 hours -0.11 0.158 0.57
Systbp 12 hr 1 systolic blood pressure mean, first 12 hours -0.35 0.002* 0.60
Systbp 12 hr 2 systolic blood pressure mean, second 12 hours -0.36 0.0008* 0.59
PaO2 12 hr 1 blood oxygenation mean, first 12 hours -0.24 0.055 0.59
PaO2 12 hr 2 blood oxygenation mean, second 12 hours -0.37 0.012* 0.61
Plat 12 hr 1 Plateau pressure mean, first 12 hours 0.28 0.0046* 0.58
Plat 12 hr 2 Plateau pressure mean, first 12 hours 0.40 5.85e-5% 0.59
CRS 12 hr 1 Respiratory compliance mean, first 12 hours -0.24 0.051 0.57
CRS 12 hr 2 Respiratory compliance mean, second 12 hours -0.26 0.047* 0.60
pH 12 hr 1 pH mean, first 12 hours -0.47 6.9e-6* 0.63
pH 12 hr 2 pH mean, second 12 hours -0.44 3.42e-5% 0.61
V¢ normalized 12 hr 1 | Normalized V; mean in first 12 hours -0.034 0.77 0.48
V; normalized 12 hr 2 | Normalized V; mean in second 12 hours -0.038 0.74 0.48
RR/V: 12 hr 1 RR/V: mean in first 12 hours 0.35 2.4e-4%* 0.62
RR/V: 12 hr 2 RR/V: mean in second 12 hours 0.41 1.1e-4%* 0.62
PaO2/FiO2 12 hr 1 Normalized blood oxygenation mean, first 12 hours -0.43 0.0016* 0.62
PaO2/FiO2 12 hr 2 Normalized blood oxygenation mean, second 12 hours -0.50 5.8e-4%* 0.62

TABLE II

MULTIVARIATE LOGISTIC REGRESSION FOR PREDICTION OF MORTALITY WITH REDUCED FEATURE SET

Parameter Description Coefficient | p-value
Admission age | Age at admission 0.30 0.0027
severe sepsis ICD-9 code for severe sepsis present 1.45 9.24e-8
Minvol 12 hr 2 | Minute volume mean in second 12 hours | 0.33 0.0029
RR/V: 12 hr 2 RR/V: mean in second 12 hours 0.31 0.0036

mining of the MIMIC-II ICU database, admittedly a data
set with limited diversity, for example from the geographical
perspective, we have found that the presence of the ICD-
9 code for respiratory distress is not very predictive of
mortality. However, we were able to find sets of parameters
with high cross-validated prediction accuracy. Interestingly,
variables related to oxygenation, for example the PaOs/FiO,
ratio, were not generally selected by the models that were
implemented although the ratio appears as an ARDS-related
mortality predictor. Thus, there is more work to better under-
stand the various relationships among variables while testing
different hypothesis. Finally, we have started to construct
models to test various scenarios and consult with subject

matter experts to determine the medical implications of our
findings.
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Fig. 2. Regularization paths of all features used in the classification vs. the [1 regularization parameter

TABLE III

PENALIZED LOGISTIC REGRESSION OF RESPIRATORY-DISTRESS-RELATED MORTALITY

Parameter Description Coefficient
Admission age Age at admission 0.18
Initial weight Weight at admission -0.19
Initial SOFA SOFA score at admission 0.19
Initial SAPSI SAPS-I score at admission 0.12
FiOg 12 hr 2 FiO2 mean in second 12 hours 0.07
severe sepsis ICD-9 code for severe sepsis present ? 0.59
V¢ 12 hr 1 V¢ mean in first 12 hours -0.04
Minvol 12 hr 2 Minute volume mean in second 12 hours 0.21
HR 12 hr 2 Heart rate mean in second 12 hours -0.11
Systbp 12 hr 2 systolic blood pressure mean, second 12 hours -0.08
PaO2 12 hr 2 blood oxygenation mean, second 12 hours -0.01
Plat 12 hr 2 Plateau pressure mean, first 12 hours 0.14
pH 12 hr 2 pH mean, second 12 hours -0.11
RR/V¢ 12 hr 2 RR/V: mean in second 12 hours 0.23
PaO2/FiO2 12 hr 2 | Normalized blood oxygenation mean, second 12 hours | -0.13
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