
 

 
Abstract—We validated a model of the TGF-β signaling 

pathway using reactions from Reactome. Using a patent-
pending technique, gene expression profiles from individual 
patients are used to determine model parameters.  Gene 
expression profiles from 45 women, normal, or benign tumor 
and malignant breast cancer were used as training and 
validating sets for assessing clinical sensitivity and specificity. 
Biomarkers were identified from the biosimulation results 
using sensitivity analyses and derivative properties from the 
model. A membrane signaling marker had sensitivity of 80% 
and specificity of 60%; while a nuclear transcription factor 
marker had sensitivity of 80% and specificity of 90% to 
predict malignancy.  Use of Fagan’s nomogram increased 
probability from 7.5% for positive mammogram to 39% with 
positive results of the biosimulation for the nuclear marker.  
Our technology will allow researchers to identify and develop 
biomarkers and assist clinicians in diagnostic and treatment 
decision making.  

Index Terms— individualized medicine, diagnostic 
sensitivity, diagnostic specificity, simulation 

I. INTRODUCTION 
HIS study was designed to follow the Phases of 
Discovery and Evaluation of Cancer Biomarkers [1], 
wherein the validated simulation model of the 

transforming growth factor (TGF) β-1 signaling pathway 
from Phelix et. al [2] was considered to have accomplished 
Phase I (pre-clinical exploratory studies) and Phase II 
(clinical assay/technique validation studies). This 
Transcriptome-To-Reactome™ Biosimulation Method uses 
gene expression levels to determine parameters in 
deterministic kinetic models of biochemical and signaling 
pathways [2]-[4].  The purpose of this brief report is to 
demonstrate the utility of this patent-pending Method as a 
tool that bridges the gap between biomarker discovery and 
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clinical implementation.  Because one patient’s gene 
expression profile determines the parameters for one 
biosimulation, the Method will be used for   Individualized 
Personalized Medicine. Unlike genomics that assign 
individuals to groups treated statistically [5], use of 
individual parameters from the patients for the 
mathematical modeling makes the predictive testing 
individualized [6]. Other forms of simulations integrating 
transcriptomics cannot achieve this standard yet [7]. 

As such, the gene expression profiles of peripheral blood 
mononuclear cells (PBMCs) from human females in 
categories of normal, benign, and malignant breast cancer 
were accessed from an existing public data archive [8], as 
accomplishing Phase III (retrospective validation studies 
for disease detection to evaluate sensitivity & specificity of 
disease detection).  PBMCs from human cancer patients 
had been used to demonstrate the usefulness of an ex vivo 
stimulation assay for assessing potential biomarkers of the 
TGFβ signaling pathway [9]. Human patients’ PBMCs 
from GSE27562 [10] were the source for gene expression 
profiles in this study; and the TGFβ Signaling Model from 
Reactome [2] was used again to simulate an exposure to a 
bolus of TGFβ-1.  Thus the Method is used as an ‘ex vivo 
simulation assay’.   
 This technology will advance discovery and development 
of biomarkers from benchtop to bedside and substantially 
reduce time to market for numerous biomarkers.  This 
report is a first step in that translational, commercialization 
effort between academia and industry. 

II. PROCEDURE  
A. Original Data Set 

The sensitivity, specificity, and predictive values of the 
mammography test are known [11], and for the GSE27562 
study [10]; where PBMC samples were collected from 
women with a suspect initial mammogram prior to 
undergoing a diagnostic biopsy procedure to determine 
whether the detected abnormality was benign or malignant. 
Blood was collected from women with a diagnosis of breast 
cancer, with a benign diagnosis, and with normal initial 
mammograms as negative controls.  From their study, a 
total of 15 samples in each category were used for 
microarray gene expression profiles as our training data 
sets (n=5) and for the validation data sets (n=10).  The 
PBMCs are also an interesting cell type because they are a 
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potential source of bone marrow mesenchymal stem cells 
that can infiltrate tumors and promote breast cancer 
metastasis [12] making the search for potential drug 
interventions of value [9]. 
 Sensitivities analyses were used to identify biomarkers 
and candidate targets for novel drug development [13].   
Also, because optimum biomarkers may also be a derivative 
property of the system, the slopes of temporal profiles for 
the reaction fluxes were assessed [14].  The generic 2 X 2 
contingency table and formulae were used for calculating 
diagnostic sensitivity, specificity, positive predictive value, 
negative predictive value, prevalence, and likelihood ratios 
[15]. Standard methods for generating the receiver 
operating characteristic curve (ROC) and area under the 
ROC (AUC) were used [16].  A biomarker identified by 
sensitivities analysis was considered within only the 
groupings where the mammogram result was suspect, i.e., 
benign and malignant, as is often effective [17]-[19].  The 
second biomarker was evaluated by including all three 
categories.  

Using the training set of PBMCs for assessing the 
“SARA” and Smad4 biomarkers identified by the 
sensitivities analyses in Fig.2, the mean values and 
standard deviation for peak response were calculated using 
sets of individual patient results in the three patient groups.  
Results of the validation data sets using the training data 
set results as cut off values for the “SARA” and Smad4 
biomarkers test results were used to assign patients to the 
diagnostic categories of normal, benign, and malignant. 

The true positives, true negatives, false positives, and false 
negatives were calculated for patient test values. The 2 X 2 
table [15] showed the calculations of sensitivity, specificity, 
positive predictive value, negative predictive value, and 
prevalence. Results of the training set of PBMCs for 
assessing the biomarker identified by the temporal analyses 
used the slope of the first 700 events that were calculated 
for each individual subject in the normal, benign, and 
malignant training data set.  The results table showed the 
derivation of the cut off values for each bimarker and 
ranges used for the validation study, i.e., mean, plus or 
minus 3 standard deviations at increments of 1/35th. Results 
of the validation data sets using the training data set results 
as cut off values for the “slope of TGFBI mRNA expression 
flux” biomarker test results were used to assign patients to 
the diagnostic categories of normal, benign, and malignant.  
In this case, the calculation included normal, benign, and 
malignant patient cases, altogether and only as pairs of two. 
 

B. Transcriptome-To-Reactome™ in silico model: 
The TGF-β signaling pathway model was obtained from 
Reactome [20], downloaded as a SBML file that was 
imported into COPASI® [21].  Manual curation was 
required to adapt the model for the TGFBI_gene as a target 
for Smad transcription factor effector functions [22-26]. 
The curated model was imported into Cytoscape for 
imaging as a diagram (Fig.1) (http://www.cytoscape.org/). 
 The model incorporated 36 ordinary differential 
equations for 29 reactions (diamonds in Fig. 1) and 52 

 
 
Fig. 1.  Depicts the graphical display of the TGFβ-1 Signaling Pathway from Reactome. At top left the exogenous TGFβ-1 is administered to the extracellular 
space.  The outlined arrow at bottom left indicates the ‘TGF-beta-1-Type II receptor:Phospho-type I receptor:SARA complex’ biomarker shown in Fig. 2c. The 
inset, enlarged from the nuclear compartment, shows the other two biomarkers considered in Figs. 3 (arrowhead) and 4 (arrow). 
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reactants or species (circles in Fig.1), using initial 
conditions determined from the genome-wide microarray 
data, GSE27562 [10] accessed from NCBI GEO [8]. There 
were 7 compartments (Fig.1). The model included 43 
parameters derived by globalization [27] from expression 
levels of 35 genes for initial species levels and k-values of 
the mass action reactions.  Genes and the derived k-values 
were assigned to reactions as in the Reactome SBML file or 
literature.  The time course simulation as deterministic 
(LSODA) method was run to generate the species level and 
reaction flux value reports. The simulation duration was 
6,000 model minutes.  Additionally a sensitivities analysis 
was run on the time series simulation with the function as 
all variables of the model and variable as all parameter 
values. Microsoft® Excel® 2007 was used to assess and 
graph all data in the study. 

III. RESULTS 
The biosimulations reanimated the PBMC response to 10 

ng/ml of exogenous TGFβ-1 (Fig. 1), administered in a 
bolus dose, for each of the 45 individual patients.  We 
generated a sensitivity analysis and performed a flux 
analysis for target gene expression, molecular analyses not 
previously available as molecular diagnostic tests. 

A. Sensitivities Analyses of Biosimulations 
Figure 2 shows bar graphs revealing the reactions that 

are sensitive to the various species in the model.  With the 

naked eye, the normal and benign cases are nearly 
identical, but the malignant cases display heightened 
sensitivity to many of the species.  Any of these species or 
reactions can be assessed for utility as a biomarker.  Two 
were selected based upon the bars in Fig. 2c, one of which 
is indicated by the arrow. 

B. Biomarker1 –  species from the model 
For the “SARA” biomarker, the sensitivity was 80%, 

specificity was 60%, positive predictive value was 67%, and 
negative predictive value was 75%, with a prevalence of 
50%.  Another species biomarker was tested, nuclear 
concentration of Smad-4 (Fig. 3), and at 85% accuracy the 
sensitivity was 80%, specificity was 90%, positive 
predictive value was 89%, negative predictive value was 
82%, with a prevalence of 50%. The positive likelihood 
ratio was 8 and negative 0.22, and when using a known 
7.5% probability of having breast cancer with a positive 
mammogram [10] on a Fagan’s nomogram [28] the 
probability of having cancer is increased to 39% (Fig. 3b). 

C. Biomarker2 – a derivative property of the system 
Figure 4 shows the results of analyzing the slope of a flux 

curve for a target gene expression as a biomarker.  The rate 
at which the flux of this gene expression event in the 
biosimulation reaches a maximum is obviously different for 
each of the classifications of patients in panel a.  The 
assessments of the training and validation sets of patient 
biosimulations resulted in an AUC of 0.77 in panel b.  At 
an accuracy of 85%, the sensitivity was 90%, specificity 
was 80%, positive predictive value was 82%, and negative 
predictive value was 89%, with a prevalence of 50%. The 
positive likelihood ratio was 4.5 and negative 0.12, and 
when using a known 7.5% probability of having breast 
cancer with a positive mammogram [10] on a Fagan’s 
nomogram [28] the probability of having cancer is 
increased to 27%. 

IV. CONCLUSIONS 
A Method has been developed that uses microarray data as 
input to the model.  This has been applied to detection and 
validation of biomarkers from a small publically available 
data set; a larger study would be more definitive.   

We demonstrated utility of two approaches for 

 
Fig. 3.  (a) and (b): Results of the validating set of PBMCs for assessing the 
“Smad4” biomarker identified by the sensitivities analyses in Fig. 1.  A ROC 
curve is shown in (a) where the area (AUC) is 0.74. (b) Fagan’s nomogram 
shows clinical utility of the test [24]. 

 

 
Fig. 2.  Depicts the 3D graphical display of the sensitivities analyses results on 
the PBMCs from the normal (a), benign (b), and malignant (c) groups of patient 
subjects.  These analyses represent the average for these groups from the 
training data set.  Note the distinct appearance of the sensitive reactions (z-depth 
axis) to reactants (x- horizontal axis) in the malignant group.  The arrow 
identifies a unique biomarker (TGF-beta-1-Type II receptor:Phospho-type I 
receptor:SARA complex).  The reaction is the dissociation of Phospo-R-Smad 
from the activated Receptor complex.  Because the biomarker is a complex of 
bound proteins with SARA being recruited to the activated receptors – and 
subsequently recruiting Smad-2 and Smad-3 to the receptor complex for 
phosphorylation, it is a candidate target for novel therapeutics. 
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identifying candidate biomarkers and then used routine 
methods for assessing their quality.  A major advantage is 
that molecular assays and tests are not needed, saving time 
and money [1], [29], [30]. Overfitting of data is avoided 
unlike microarray results themselves [1], [13]. The 
approach is amenable to establishing multiple biomarkers 
that can enable screening to reduce false positive and 
negative cases [1]. The Method lends itself readily to drug 
development and targeted therapies, using all types of 
biomarkers [1].   

V. SUMMARY 
Being able to view multiple species, their time course 

concentrations and their interactions provides insights into 
disease states that have not been available up until now 
with clinical test methods.  This Methodology provides the 
opportunity to point to interactions of measures that can 
give medically actionable results for clinical utility.  This 
technology can be scaled, is cost effective, and can be run 
on an individual, for precision medicine or to compare to 
average. 
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Fig. 4.  (a) Temporal profile of the flux through the model simulation of the 
TGFBI (transforming growth factor beta induced protein ig-h3; also called 
BIGH3[26]) mRNA expression – the target gene of TGFβ1 signaling validated 
in [2].  These curves represent the averages of the training data sets for normal, 
benign, and malignant groups.  The simulation time of 700 is shown with the 
vertical line that intersects with the first point of convergence of the benign (thin 
solid line) and malignant (dotted line) results. (b) Results of the validating set of 
PBMCs for assessing the biomarker identified by the temporal analyses.  Slope 
of the first 700 was calculated for each individual subject in the normal, benign, 
and malignant training data set. The ROC curve shown is based upon 
differentiating malignant from benign.  
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