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Abstract— The creation of personal and individualized anti-
cancer treatments has been a major goal in the progression
of cancer discovery as evident by the continuous research
efforts in genetics and population based PK/PD studies. In
this paper we use our clinical decision support tool, called
ChemoDSS, to evaluate the effectiveness of three treatments
recommended by the NCCN guidelines for ovarian cancer
using pre-clinical data from the literature. In particular, we
analyze the treatments of PC (i.e., Paclitaxel and Cispaltin),
DC (i.e., Docetaxel and Carboplatin), and PBC (i.e., Paclitaxel,
Bevacizumab, and Carboplatin). Our in silico analysis of the
ovarian cancer treatments shows that PC was the most effective
regimen for treating ovarian cancer compared to DC and PBC,
which is consistent with literature findings. We demonstrate
that we can successfully evaluate the effectiveness of the selected
ovarian cancer treatment regimens using ChemoDSS.

I. INTRODUCTION

Cancer is a disease that typically involves cellular dis-
function, followed by an imbalance in cell proliferation and
apoptosis (i.e., programmed cell death) causing abnormal
cell growth, metastasis, and eventually death if not treated.
It is the second leading cause of death among diseases
worldwide [1]. The large degree of variability among the
types of cancers and the genetic variability in cancer patients
make the selection of cancer treatment complicated. Further
complications are caused by the type of care (e.g. curative
or palliative) that is chosen for the individual patient. Hence,
oncologists are faced with the difficult decision of selecting
a treatment that maximizes the effect against cancerous
cells while minimizing the toxicity to the overall health
of the patient. To aid practitioners worldwide, the National
Comprehensive Cancer Network (NCCN) publishes clinical
practice guidelines in oncology [2]. These regularly updated
guidelines include treatment regimens that have been most
successful in treating large groups of patients for a particular
type of cancer.

To better understand tumor response to chemotherapies,
tumor growth, pharmacokinetic (PK), and pharmacodynamic
(PD) models are collectively used. Complicated and corre-
lated processes of tumor growth can be modeled either em-
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pirically or functionally. Empirical models use mathematical
equations to describe the tumor growth and in doing so treat
the tumor cell population as a whole. On the other hand,
functional models reflect the heterogeneity within tumor cell
population and are based on a set of assumptions about
their biological growth [3]. PK models portray the way
drugs are dispersed throughout the body from the time they
are absorbed until they are metabolised or excreted (i.e.,
PK defines exposure to the drug). PD models describe the
occurrence of biological processes and the consequent effects
caused by the presence of the drug concentration in the body.
Characterizing the effects of anticancer drugs and relating
their effects to the tumor response may be possible when
tumor growth, PK, and PD models are combined [4].

In our previous work we studied tumor growth, drug
metabolism, and the effectiveness of anticancer drugs as they
apply to HER2+ breast cancer in pre-clinical settings [5].
In this paper, we use our decision support software, called
ChemoDSS, for in silico evaluation of ovarian cancer treat-
ments. Specifically, we evaluate three treatments recom-
mended by the NCCN guidelines for ovarian cancer by using
pre-clinical data from the literature for A2780 human ovarian
cancer xenografts in athymic mice. The chemotherapies we
selected were PC (i.e., Paclitaxel and Cispaltin), DC (i.e.,
Docetaxel and Carboplatin), and PBC (i.e., Paclitaxel, Beva-
cizumab, and Carboplatin). In our analysis, the exponential-
linear tumor growth model was selected to define the tumor
progression. Multicompartment PK models were used to
define drug absorption, and the effectiveness of treatment
was characterized by the signal transduction PD model.
Model parameters were taken from the literature. When
these parameters were not explicitly available for the models
used in our analysis, they were computed from literature
data using methods from our previous research in bio-
inspired artificial intelligence computation techniques such as
genetic algorithms and others [6]–[8]. Our in-silico analysis
of the NCCN guidelines for ovarian cancer is consistent with
literature findings [2].

II. PK AND PD MODELS

A. Pharmacokinetic models

In our clinical decision support tool ChemoDSS, we use
multicompartment PK models to represent the dynamics of
the anti-cancer drugs moving throughout the body of the
patient [5]. Different PK models can have one, two, and three
compartments. The PK parameters for Cisplatin, Docetaxel,
and Paclitaxel were obtained from [9]. To obtain the PK
parameters from Bevacizumab [10] and Carboplatin [11], we

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 3442



evaluated concentration curves from pre-clinical data with
bio-inspired artificial intelligence computation techniques
established in our previous research [6]–[8]. In our in silico
analysis, the drug Docetaxel was modeled using a three
compartment PK model, whereas the remaining drugs were
modeled using two compartment models.

B. Tumor Growth model
In our analysis we represent the tumor growth by the

exponential-linear model studied in [12]. This model is
useful for portraying tumor growth in pre-clinical settings
since the tumor size never reaches the plateau population
which is usually evident in other types of empirical models.
The exponential-linear tumor growth model can be defined
as follows:

dw(t)

dt
= λ0 · w(t) w(t) ≤ wth

dw(t)

dt
= λ1 w(t) > wth

w(0) = w0

(1)

where w0 represents the weight of the initial tumor, λ0 is
the exponential growth rate, and λ1 is the linear rate. The
variable wth is a threshold of the tumor weight where the
growth switches from exponential to linear.

C. Pharmacodynamic models
For our in silico analysis, the transit compartment model

for signal transduction [9] was used to represent the process
of drug effects on the tumor. The model has four compart-
ments (namely, x1, x2, x3, and x4), which describe the delay
between the drug intake and tumor cell death as shown in
Fig. 1(a). As illustrated in Fig. 1(a), a coefficient called α is
used to account for the interactions that occur when multiple
drugs are administered together. At any given time, the tumor
weight is distributed through the four compartments, where
compartment x1 only contains reproducing tumor cells, and
remaining compartments contain the dying ones. The rate the
cells move from compartment x2 through x4 is represented
by k1, while k2 is the measure of drug effect for killing
cancer cells. Using a set of ordinary differential equations,
the entire model can be expressed as follows:

dx1(t)

dt
=

λ0 · x1(t)[
1 +

(
λ0
λ1

· w(t)
)ψ] 1

ψ

− α · PK(t) · x1(t) (2)

dx2(t)

dt
= α · PK(t) · x1(t)− k1 · x2(t) (3)

dx3(t)

dt
= k1 · [x2(t)− x3(t)] (4)

dx4(t)

dt
= k1 · [x3(t)− x4(t)] (5)

In Eq. (2) the tumor weight, w(t), is defined as:

w(t) = x1(t) + x2(t) + x3(t) + x4(t) (6)

PK(t) represents the amount of cells that will be damaged
from anticancer drugs as depicted in Fig. 1(b), which can be
expressed as:

PK(t) = k2A · cA(t) + k2B · cB(t) + k2C · cC(t) (7)

where cA(t), cB(t) and cC(t) represent each of the drug
concentrations which are computed with the appropriate PK

TABLE I
DOSING SCHEDULES FOR CHEMOTHERAPY REGIMENS

Chemotherapy Drug Dose Administration Day

PC

Paclitaxel 135 mg/m2 day 1
Cisplatin 90 mg/m2 day 2
Paclitaxel 60 mg/m2 day 8

DC
Docetaxel 70 mg/m2 day 1
Carboplatin AUC 6 day 1

PBC

Paclitaxel 175 mg/m2 day 1
Bevacizumab 7.5 mg/kg day 1
Carboplatin AUC 6 day 1

model. Also, note that the tumor growth function in Eq. (2)
(i.e., the first term in Eq. (2)) is represented by a continuous
function which is equivalent to the piecewise function in
Eq. (1) for large values of Ψ [9].

Fig. 1. Example of (a) transit four-compartment PK/PD model and (b)
concentration of a multi-drug chemotherapy treatment

III. DECISION SUPPORT SYSTEM SOFTWARE:
CHEMODSS

In our Bio-Inspired Computational Laboratory at the City
College of CUNY, we developed a decision support system
software to study tumor growth and PK/PD models [5]. In this
software system, called ChemoDSS, the artificial intelligence
algorithms, mathematical models, visualization of data and
the graphical user interfaces (GUI) are implemented in Java
programming language.

A. Chemotherapy Management Console

Chemotherapy Management Console (CM) allows the us-
er to enter chemotherapy treatments and anti-cancer drug
related information. The GUI for the CM is illustrated in
Fig. 2. CM has multiple panels allowing the user to enter
specific drug parameters. Drug Administration Panel is in
the center of the console for the users to enter the duration
of the cycle, the total number of cycles, and the type of drug
administration. Drug Delivery Panel, located on the right side
of the console, will display the number of days for that cycle
when the user selects the duration of the cycle.

In ChemoDSS different combinations of anti-cancer drugs
can be chosen by the users, and the PK/PD parameters for
each drug can be adjusted as needed. In PK Model Panel,
various parameters can be entered, including the model type,
the rate at which the drug is excreted from the body, the rate
at which the drug is distributed within the body, and the
volume of drug distribution. Depending on the PD model
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chosen in Tumor Response Console, relevant PD parameters
will be displayed in PD Model Panel of CM as shown in
Fig. 2.

Fig. 2. GUI for Chemotherapy Management Console

B. Tumor Response Console

Using the Tumor Response Console (TR), the tumor
growth, PK, and PD parameters can be analyzed. As shown in
Fig. 3, the users can enter the exponential and linear growth
rate parameters, and the initial size of the tumor for the
chosen tumor growth model selected in Tumor Growth Panel
on the top left corner. In addition, the users can choose the
PD model and the drug treatment to be analyzed for Tumor
Response Panel in the center left of the TR console. The
response of the tumor and the concentration of the drug
can be observed on the right-hand panel of ChemoDSS.
In the TR console, users have the option of stopping the
assessment at any time and can change parameters related to
the existing treatment. A report with the model parameters,
drug concentrations, and the tumor response graphs are
produced automatically when the evaluation is completed.

Fig. 3. GUI for Tumor Response Console

IV. IN SILICO ANALYSIS

ChemoDSS evaluated the effectiveness of three treatments
recommended by the NCCN guidelines for ovarian cancer. We
generated multi-drug response from the drug combination of
PC, DC and PBC using experimental drug response data for
cell-line A2780 ovarian cancer tumors that were xenografted
onto athymic mice reported in [12]. The tumor growth was
modeled using an exponential-linear function as described
in Sec. II. Based on the experimental data in [12], the
exponential and linear growth constants and the initial tumor

TABLE II
PK/PD PARAMETERS

Type Parameters Pac Cis Doc Car Bev

PK

k10 20.736 106.008 47.04 147.331 0.1839
k12 0.144 108.552 49.152 123.465 1.5380
k21 2.016 47.304 57.72 134.64 1.9115
k13 - - 7.68 - -
k31 - - 2.736 - -

PD k2 0.6288 6.36 6.648 0.2629 0.0013

size were determined as λ0 = 0.146 1/day, λ1 = 0.334
g/day, and 100 mg respectively.

The values for the PK and PD parameters used in our
analysis are shown in Table II. The unit for PK parame-
ters is 1/days representing the rates with which the drugs
flow throughout the body. The PD values, representing the
drug effectiveness, have the units L/(mg × days). The drug
names where abbreviated as Pac (Paclitaxel), Cis (Cisplatin),
Doc (Docetaxel), Car (Carboplatin), and Bev (Bevacizumab)
in Table II.

The administered treatments of PC, DC, and PBC were
analyzed using the schedules described in Table I. The
anti-cancer drugs in the treatments are absorbed, dispersed,
metabolised, and excreted at different rates as can be seen
in Figs. 4 through 6. Figure 4 shows the drug concentration
for the PC treatment in an athymic mouse for one cycle of
therapy. We can observe that there are significant differences
in the length of time that different drugs remain in the body.
For example, the concentration of Paclitaxel reduces from
104 ng/mL to 10−2 ng/mL in approximately 4 days while
Cisplatin leaves the body much quicker, in approximately
one day.

0 2 4 6 8 10
10−2

100

102

104

106

Time (Days)

C
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
L)

 

 

Paclitaxel
Cisplatin

Fig. 4. Drug concentrations for PC in a preclinical mouse model

In Fig. 5 we can see the drug concentration for the
treatment of DC in an athymic mouse for one cycle. The
peak concentrations occur for Docetaxel and Carboplatin
at approximately 103 ng/mL and 104 ng/mL, respectively.
Although the peak concentration of Carboplatin is higher,
it exits the body quicker than Docetaxel, in approximately
4 hours. It takes about 36 hours for the concentration of
Docetaxel to leave the body which makes the total drug
absorbed by the body (i.e., AUC) for these two drugs similar.

We can see in Fig. 6 the concentration values for the
targeted and cytotoxic therapy combination of PBC metabo-
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Fig. 5. Drug concentrations for DC in a preclinical mouse model

lized in an athymic mouse for one cycle of treatment. The
figure demonstrates that there is a great deal of variability
in the AUC of these drugs. We observe that concentration
of Bevacizumab peaks at about 105 ng/mL and stays in
the body for the duration of the whole cycle at a high
concentration, slightly falling below 104 ng/mL. On the other
hand, the concentrations of Paclitaxel and Carboplatin peak
at a lower concentration and exit the body much earlier, at
approximately 4 days and 8 hours, respectively.
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Fig. 6. Drug concentrations for PBC in a preclinical mouse model
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Fig. 7. Tumor response to PBC, PC and DC for ovarian cancer cells in a
preclinical mouse model

Figure 7 shows the tumor response of PC, DC, and P-
BC after 6 cycles of treatment. We can observe that the
tumor size has been reduced from 100 to 0.1 mm3 for
chemotherapy treatments of PC and PBC, while DC only
reduces the tumor size to 12 mm3. These results match with
literature findings and demonstrate the regimens from NCCN
guidelines for PBC, PC, and DC are effective anti-cancer
treatments [2]. However, tumor response in PC appears to
be preferable to PBC and DC. The tumor size decreases at

the beginning of each treatment cycle for PBC and DC due to
the administration of anticancer drugs. As soon as the drug
concentration leaves the body, the tumor starts to grow in
size for the rest of the treatment cycle. The ability for the
tumor to regrow after the drugs have left the body appears to
be greater for DC than it is for PBC. For PC, the tumor size
decreases dramatically after a single cycle of treatment and
tumor size is almost equal to zero after 28 days of treatment,
where it remains until the end of the analysis.

V. CONCLUSIONS

In this paper, using our clinical decision support tool,
called ChemoDSS, we evaluate the effectiveness of three
treatments recommended by the NCCN guidelines for ovarian
cancer with pre-clinical data from the literature. In particular,
we analyzed PC, DC, and PBC. Our in silico analysis of
the ovarian cancer treatments shows that PC was the most
effective regimen for treating ovarian cancer compared to
DC and PBC, which is consistent with literature for ovarian
cancer treatments. The results of our evaluation demonstrate
that we can evaluate NCCN guidelines for ovarian cancer with
the help of our software tool ChemoDSS. Future versions of
ChemoDSS are expected to be used with personal clinical
data to aid oncologists in making treatment decisions.
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